Copied to
clipboard

G = C2×Q16⋊D5order 320 = 26·5

Direct product of C2 and Q16⋊D5

Series: Derived Chief Lower central Upper central

 Derived series C1 — C20 — C2×Q16⋊D5
 Chief series C1 — C5 — C10 — C20 — C4×D5 — C2×C4×D5 — C2×Q8×D5 — C2×Q16⋊D5
 Lower central C5 — C10 — C20 — C2×Q16⋊D5
 Upper central C1 — C22 — C2×C4 — C2×Q16

Generators and relations for C2×Q16⋊D5
G = < a,b,c,d,e | a2=b8=d5=e2=1, c2=b4, ab=ba, ac=ca, ad=da, ae=ea, cbc-1=b-1, bd=db, ebe=b5, cd=dc, ece=b4c, ede=d-1 >

Subgroups: 958 in 258 conjugacy classes, 103 normal (33 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C5, C8, C8, C2×C4, C2×C4, D4, Q8, Q8, C23, D5, C10, C10, C2×C8, C2×C8, M4(2), SD16, Q16, Q16, C22×C4, C2×D4, C2×Q8, C2×Q8, C4○D4, Dic5, Dic5, C20, C20, D10, D10, C2×C10, C2×M4(2), C2×SD16, C2×Q16, C2×Q16, C8.C22, C22×Q8, C2×C4○D4, C52C8, C40, Dic10, Dic10, C4×D5, C4×D5, D20, D20, C2×Dic5, C2×Dic5, C2×C20, C2×C20, C5×Q8, C5×Q8, C22×D5, C22×D5, C2×C8.C22, C8⋊D5, C40⋊C2, C2×C52C8, Q8⋊D5, C5⋊Q16, C2×C40, C5×Q16, C2×Dic10, C2×Dic10, C2×C4×D5, C2×C4×D5, C2×D20, C2×D20, Q8×D5, Q8×D5, Q82D5, Q82D5, Q8×C10, C2×C8⋊D5, C2×C40⋊C2, Q16⋊D5, C2×Q8⋊D5, C2×C5⋊Q16, C10×Q16, C2×Q8×D5, C2×Q82D5, C2×Q16⋊D5
Quotients: C1, C2, C22, D4, C23, D5, C2×D4, C24, D10, C8.C22, C22×D4, C22×D5, C2×C8.C22, D4×D5, C23×D5, Q16⋊D5, C2×D4×D5, C2×Q16⋊D5

Smallest permutation representation of C2×Q16⋊D5
On 160 points
Generators in S160
(1 83)(2 84)(3 85)(4 86)(5 87)(6 88)(7 81)(8 82)(9 112)(10 105)(11 106)(12 107)(13 108)(14 109)(15 110)(16 111)(17 157)(18 158)(19 159)(20 160)(21 153)(22 154)(23 155)(24 156)(25 152)(26 145)(27 146)(28 147)(29 148)(30 149)(31 150)(32 151)(33 138)(34 139)(35 140)(36 141)(37 142)(38 143)(39 144)(40 137)(41 103)(42 104)(43 97)(44 98)(45 99)(46 100)(47 101)(48 102)(49 91)(50 92)(51 93)(52 94)(53 95)(54 96)(55 89)(56 90)(57 132)(58 133)(59 134)(60 135)(61 136)(62 129)(63 130)(64 131)(65 128)(66 121)(67 122)(68 123)(69 124)(70 125)(71 126)(72 127)(73 113)(74 114)(75 115)(76 116)(77 117)(78 118)(79 119)(80 120)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128)(129 130 131 132 133 134 135 136)(137 138 139 140 141 142 143 144)(145 146 147 148 149 150 151 152)(153 154 155 156 157 158 159 160)
(1 77 5 73)(2 76 6 80)(3 75 7 79)(4 74 8 78)(9 31 13 27)(10 30 14 26)(11 29 15 25)(12 28 16 32)(17 140 21 144)(18 139 22 143)(19 138 23 142)(20 137 24 141)(33 155 37 159)(34 154 38 158)(35 153 39 157)(36 160 40 156)(41 67 45 71)(42 66 46 70)(43 65 47 69)(44 72 48 68)(49 59 53 63)(50 58 54 62)(51 57 55 61)(52 64 56 60)(81 119 85 115)(82 118 86 114)(83 117 87 113)(84 116 88 120)(89 136 93 132)(90 135 94 131)(91 134 95 130)(92 133 96 129)(97 128 101 124)(98 127 102 123)(99 126 103 122)(100 125 104 121)(105 149 109 145)(106 148 110 152)(107 147 111 151)(108 146 112 150)
(1 107 33 125 133)(2 108 34 126 134)(3 109 35 127 135)(4 110 36 128 136)(5 111 37 121 129)(6 112 38 122 130)(7 105 39 123 131)(8 106 40 124 132)(9 143 67 63 88)(10 144 68 64 81)(11 137 69 57 82)(12 138 70 58 83)(13 139 71 59 84)(14 140 72 60 85)(15 141 65 61 86)(16 142 66 62 87)(17 44 56 119 30)(18 45 49 120 31)(19 46 50 113 32)(20 47 51 114 25)(21 48 52 115 26)(22 41 53 116 27)(23 42 54 117 28)(24 43 55 118 29)(73 151 159 100 92)(74 152 160 101 93)(75 145 153 102 94)(76 146 154 103 95)(77 147 155 104 96)(78 148 156 97 89)(79 149 157 98 90)(80 150 158 99 91)
(1 92)(2 89)(3 94)(4 91)(5 96)(6 93)(7 90)(8 95)(9 47)(10 44)(11 41)(12 46)(13 43)(14 48)(15 45)(16 42)(17 144)(18 141)(19 138)(20 143)(21 140)(22 137)(23 142)(24 139)(25 67)(26 72)(27 69)(28 66)(29 71)(30 68)(31 65)(32 70)(33 159)(34 156)(35 153)(36 158)(37 155)(38 160)(39 157)(40 154)(49 86)(50 83)(51 88)(52 85)(53 82)(54 87)(55 84)(56 81)(57 116)(58 113)(59 118)(60 115)(61 120)(62 117)(63 114)(64 119)(73 133)(74 130)(75 135)(76 132)(77 129)(78 134)(79 131)(80 136)(97 108)(98 105)(99 110)(100 107)(101 112)(102 109)(103 106)(104 111)(121 147)(122 152)(123 149)(124 146)(125 151)(126 148)(127 145)(128 150)

G:=sub<Sym(160)| (1,83)(2,84)(3,85)(4,86)(5,87)(6,88)(7,81)(8,82)(9,112)(10,105)(11,106)(12,107)(13,108)(14,109)(15,110)(16,111)(17,157)(18,158)(19,159)(20,160)(21,153)(22,154)(23,155)(24,156)(25,152)(26,145)(27,146)(28,147)(29,148)(30,149)(31,150)(32,151)(33,138)(34,139)(35,140)(36,141)(37,142)(38,143)(39,144)(40,137)(41,103)(42,104)(43,97)(44,98)(45,99)(46,100)(47,101)(48,102)(49,91)(50,92)(51,93)(52,94)(53,95)(54,96)(55,89)(56,90)(57,132)(58,133)(59,134)(60,135)(61,136)(62,129)(63,130)(64,131)(65,128)(66,121)(67,122)(68,123)(69,124)(70,125)(71,126)(72,127)(73,113)(74,114)(75,115)(76,116)(77,117)(78,118)(79,119)(80,120), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152)(153,154,155,156,157,158,159,160), (1,77,5,73)(2,76,6,80)(3,75,7,79)(4,74,8,78)(9,31,13,27)(10,30,14,26)(11,29,15,25)(12,28,16,32)(17,140,21,144)(18,139,22,143)(19,138,23,142)(20,137,24,141)(33,155,37,159)(34,154,38,158)(35,153,39,157)(36,160,40,156)(41,67,45,71)(42,66,46,70)(43,65,47,69)(44,72,48,68)(49,59,53,63)(50,58,54,62)(51,57,55,61)(52,64,56,60)(81,119,85,115)(82,118,86,114)(83,117,87,113)(84,116,88,120)(89,136,93,132)(90,135,94,131)(91,134,95,130)(92,133,96,129)(97,128,101,124)(98,127,102,123)(99,126,103,122)(100,125,104,121)(105,149,109,145)(106,148,110,152)(107,147,111,151)(108,146,112,150), (1,107,33,125,133)(2,108,34,126,134)(3,109,35,127,135)(4,110,36,128,136)(5,111,37,121,129)(6,112,38,122,130)(7,105,39,123,131)(8,106,40,124,132)(9,143,67,63,88)(10,144,68,64,81)(11,137,69,57,82)(12,138,70,58,83)(13,139,71,59,84)(14,140,72,60,85)(15,141,65,61,86)(16,142,66,62,87)(17,44,56,119,30)(18,45,49,120,31)(19,46,50,113,32)(20,47,51,114,25)(21,48,52,115,26)(22,41,53,116,27)(23,42,54,117,28)(24,43,55,118,29)(73,151,159,100,92)(74,152,160,101,93)(75,145,153,102,94)(76,146,154,103,95)(77,147,155,104,96)(78,148,156,97,89)(79,149,157,98,90)(80,150,158,99,91), (1,92)(2,89)(3,94)(4,91)(5,96)(6,93)(7,90)(8,95)(9,47)(10,44)(11,41)(12,46)(13,43)(14,48)(15,45)(16,42)(17,144)(18,141)(19,138)(20,143)(21,140)(22,137)(23,142)(24,139)(25,67)(26,72)(27,69)(28,66)(29,71)(30,68)(31,65)(32,70)(33,159)(34,156)(35,153)(36,158)(37,155)(38,160)(39,157)(40,154)(49,86)(50,83)(51,88)(52,85)(53,82)(54,87)(55,84)(56,81)(57,116)(58,113)(59,118)(60,115)(61,120)(62,117)(63,114)(64,119)(73,133)(74,130)(75,135)(76,132)(77,129)(78,134)(79,131)(80,136)(97,108)(98,105)(99,110)(100,107)(101,112)(102,109)(103,106)(104,111)(121,147)(122,152)(123,149)(124,146)(125,151)(126,148)(127,145)(128,150)>;

G:=Group( (1,83)(2,84)(3,85)(4,86)(5,87)(6,88)(7,81)(8,82)(9,112)(10,105)(11,106)(12,107)(13,108)(14,109)(15,110)(16,111)(17,157)(18,158)(19,159)(20,160)(21,153)(22,154)(23,155)(24,156)(25,152)(26,145)(27,146)(28,147)(29,148)(30,149)(31,150)(32,151)(33,138)(34,139)(35,140)(36,141)(37,142)(38,143)(39,144)(40,137)(41,103)(42,104)(43,97)(44,98)(45,99)(46,100)(47,101)(48,102)(49,91)(50,92)(51,93)(52,94)(53,95)(54,96)(55,89)(56,90)(57,132)(58,133)(59,134)(60,135)(61,136)(62,129)(63,130)(64,131)(65,128)(66,121)(67,122)(68,123)(69,124)(70,125)(71,126)(72,127)(73,113)(74,114)(75,115)(76,116)(77,117)(78,118)(79,119)(80,120), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152)(153,154,155,156,157,158,159,160), (1,77,5,73)(2,76,6,80)(3,75,7,79)(4,74,8,78)(9,31,13,27)(10,30,14,26)(11,29,15,25)(12,28,16,32)(17,140,21,144)(18,139,22,143)(19,138,23,142)(20,137,24,141)(33,155,37,159)(34,154,38,158)(35,153,39,157)(36,160,40,156)(41,67,45,71)(42,66,46,70)(43,65,47,69)(44,72,48,68)(49,59,53,63)(50,58,54,62)(51,57,55,61)(52,64,56,60)(81,119,85,115)(82,118,86,114)(83,117,87,113)(84,116,88,120)(89,136,93,132)(90,135,94,131)(91,134,95,130)(92,133,96,129)(97,128,101,124)(98,127,102,123)(99,126,103,122)(100,125,104,121)(105,149,109,145)(106,148,110,152)(107,147,111,151)(108,146,112,150), (1,107,33,125,133)(2,108,34,126,134)(3,109,35,127,135)(4,110,36,128,136)(5,111,37,121,129)(6,112,38,122,130)(7,105,39,123,131)(8,106,40,124,132)(9,143,67,63,88)(10,144,68,64,81)(11,137,69,57,82)(12,138,70,58,83)(13,139,71,59,84)(14,140,72,60,85)(15,141,65,61,86)(16,142,66,62,87)(17,44,56,119,30)(18,45,49,120,31)(19,46,50,113,32)(20,47,51,114,25)(21,48,52,115,26)(22,41,53,116,27)(23,42,54,117,28)(24,43,55,118,29)(73,151,159,100,92)(74,152,160,101,93)(75,145,153,102,94)(76,146,154,103,95)(77,147,155,104,96)(78,148,156,97,89)(79,149,157,98,90)(80,150,158,99,91), (1,92)(2,89)(3,94)(4,91)(5,96)(6,93)(7,90)(8,95)(9,47)(10,44)(11,41)(12,46)(13,43)(14,48)(15,45)(16,42)(17,144)(18,141)(19,138)(20,143)(21,140)(22,137)(23,142)(24,139)(25,67)(26,72)(27,69)(28,66)(29,71)(30,68)(31,65)(32,70)(33,159)(34,156)(35,153)(36,158)(37,155)(38,160)(39,157)(40,154)(49,86)(50,83)(51,88)(52,85)(53,82)(54,87)(55,84)(56,81)(57,116)(58,113)(59,118)(60,115)(61,120)(62,117)(63,114)(64,119)(73,133)(74,130)(75,135)(76,132)(77,129)(78,134)(79,131)(80,136)(97,108)(98,105)(99,110)(100,107)(101,112)(102,109)(103,106)(104,111)(121,147)(122,152)(123,149)(124,146)(125,151)(126,148)(127,145)(128,150) );

G=PermutationGroup([[(1,83),(2,84),(3,85),(4,86),(5,87),(6,88),(7,81),(8,82),(9,112),(10,105),(11,106),(12,107),(13,108),(14,109),(15,110),(16,111),(17,157),(18,158),(19,159),(20,160),(21,153),(22,154),(23,155),(24,156),(25,152),(26,145),(27,146),(28,147),(29,148),(30,149),(31,150),(32,151),(33,138),(34,139),(35,140),(36,141),(37,142),(38,143),(39,144),(40,137),(41,103),(42,104),(43,97),(44,98),(45,99),(46,100),(47,101),(48,102),(49,91),(50,92),(51,93),(52,94),(53,95),(54,96),(55,89),(56,90),(57,132),(58,133),(59,134),(60,135),(61,136),(62,129),(63,130),(64,131),(65,128),(66,121),(67,122),(68,123),(69,124),(70,125),(71,126),(72,127),(73,113),(74,114),(75,115),(76,116),(77,117),(78,118),(79,119),(80,120)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128),(129,130,131,132,133,134,135,136),(137,138,139,140,141,142,143,144),(145,146,147,148,149,150,151,152),(153,154,155,156,157,158,159,160)], [(1,77,5,73),(2,76,6,80),(3,75,7,79),(4,74,8,78),(9,31,13,27),(10,30,14,26),(11,29,15,25),(12,28,16,32),(17,140,21,144),(18,139,22,143),(19,138,23,142),(20,137,24,141),(33,155,37,159),(34,154,38,158),(35,153,39,157),(36,160,40,156),(41,67,45,71),(42,66,46,70),(43,65,47,69),(44,72,48,68),(49,59,53,63),(50,58,54,62),(51,57,55,61),(52,64,56,60),(81,119,85,115),(82,118,86,114),(83,117,87,113),(84,116,88,120),(89,136,93,132),(90,135,94,131),(91,134,95,130),(92,133,96,129),(97,128,101,124),(98,127,102,123),(99,126,103,122),(100,125,104,121),(105,149,109,145),(106,148,110,152),(107,147,111,151),(108,146,112,150)], [(1,107,33,125,133),(2,108,34,126,134),(3,109,35,127,135),(4,110,36,128,136),(5,111,37,121,129),(6,112,38,122,130),(7,105,39,123,131),(8,106,40,124,132),(9,143,67,63,88),(10,144,68,64,81),(11,137,69,57,82),(12,138,70,58,83),(13,139,71,59,84),(14,140,72,60,85),(15,141,65,61,86),(16,142,66,62,87),(17,44,56,119,30),(18,45,49,120,31),(19,46,50,113,32),(20,47,51,114,25),(21,48,52,115,26),(22,41,53,116,27),(23,42,54,117,28),(24,43,55,118,29),(73,151,159,100,92),(74,152,160,101,93),(75,145,153,102,94),(76,146,154,103,95),(77,147,155,104,96),(78,148,156,97,89),(79,149,157,98,90),(80,150,158,99,91)], [(1,92),(2,89),(3,94),(4,91),(5,96),(6,93),(7,90),(8,95),(9,47),(10,44),(11,41),(12,46),(13,43),(14,48),(15,45),(16,42),(17,144),(18,141),(19,138),(20,143),(21,140),(22,137),(23,142),(24,139),(25,67),(26,72),(27,69),(28,66),(29,71),(30,68),(31,65),(32,70),(33,159),(34,156),(35,153),(36,158),(37,155),(38,160),(39,157),(40,154),(49,86),(50,83),(51,88),(52,85),(53,82),(54,87),(55,84),(56,81),(57,116),(58,113),(59,118),(60,115),(61,120),(62,117),(63,114),(64,119),(73,133),(74,130),(75,135),(76,132),(77,129),(78,134),(79,131),(80,136),(97,108),(98,105),(99,110),(100,107),(101,112),(102,109),(103,106),(104,111),(121,147),(122,152),(123,149),(124,146),(125,151),(126,148),(127,145),(128,150)]])

50 conjugacy classes

 class 1 2A 2B 2C 2D 2E 2F 2G 4A 4B 4C 4D 4E 4F 4G 4H 4I 4J 5A 5B 8A 8B 8C 8D 10A ··· 10F 20A 20B 20C 20D 20E ··· 20L 40A ··· 40H order 1 2 2 2 2 2 2 2 4 4 4 4 4 4 4 4 4 4 5 5 8 8 8 8 10 ··· 10 20 20 20 20 20 ··· 20 40 ··· 40 size 1 1 1 1 10 10 20 20 2 2 4 4 4 4 10 10 20 20 2 2 4 4 20 20 2 ··· 2 4 4 4 4 8 ··· 8 4 ··· 4

50 irreducible representations

 dim 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 4 4 4 4 type + + + + + + + + + + + + + + + + - + + image C1 C2 C2 C2 C2 C2 C2 C2 C2 D4 D4 D4 D5 D10 D10 D10 C8.C22 D4×D5 D4×D5 Q16⋊D5 kernel C2×Q16⋊D5 C2×C8⋊D5 C2×C40⋊C2 Q16⋊D5 C2×Q8⋊D5 C2×C5⋊Q16 C10×Q16 C2×Q8×D5 C2×Q8⋊2D5 C4×D5 C2×Dic5 C22×D5 C2×Q16 C2×C8 Q16 C2×Q8 C10 C4 C22 C2 # reps 1 1 1 8 1 1 1 1 1 2 1 1 2 2 8 4 2 2 2 8

Matrix representation of C2×Q16⋊D5 in GL6(𝔽41)

 40 0 0 0 0 0 0 40 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1
,
 40 0 0 0 0 0 0 40 0 0 0 0 0 0 39 17 2 24 0 0 24 2 17 39 0 0 40 29 0 0 0 0 12 1 0 0
,
 40 0 0 0 0 0 0 40 0 0 0 0 0 0 6 40 22 0 0 0 1 13 0 22 0 0 17 40 35 1 0 0 1 24 40 28
,
 40 40 0 0 0 0 36 35 0 0 0 0 0 0 34 40 0 0 0 0 1 0 0 0 0 0 0 0 34 40 0 0 0 0 1 0
,
 0 7 0 0 0 0 6 0 0 0 0 0 0 0 39 35 10 19 0 0 8 2 31 31 0 0 36 11 8 13 0 0 5 5 39 33

G:=sub<GL(6,GF(41))| [40,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[40,0,0,0,0,0,0,40,0,0,0,0,0,0,39,24,40,12,0,0,17,2,29,1,0,0,2,17,0,0,0,0,24,39,0,0],[40,0,0,0,0,0,0,40,0,0,0,0,0,0,6,1,17,1,0,0,40,13,40,24,0,0,22,0,35,40,0,0,0,22,1,28],[40,36,0,0,0,0,40,35,0,0,0,0,0,0,34,1,0,0,0,0,40,0,0,0,0,0,0,0,34,1,0,0,0,0,40,0],[0,6,0,0,0,0,7,0,0,0,0,0,0,0,39,8,36,5,0,0,35,2,11,5,0,0,10,31,8,39,0,0,19,31,13,33] >;

C2×Q16⋊D5 in GAP, Magma, Sage, TeX

C_2\times Q_{16}\rtimes D_5
% in TeX

G:=Group("C2xQ16:D5");
// GroupNames label

G:=SmallGroup(320,1436);
// by ID

G=gap.SmallGroup(320,1436);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,184,1123,185,136,438,235,102,12550]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^8=d^5=e^2=1,c^2=b^4,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c^-1=b^-1,b*d=d*b,e*b*e=b^5,c*d=d*c,e*c*e=b^4*c,e*d*e=d^-1>;
// generators/relations

׿
×
𝔽