Copied to
clipboard

G = C52C826D4order 320 = 26·5

8th semidirect product of C52C8 and D4 acting via D4/C22=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C52C826D4, C57(C89D4), C22⋊C815D5, C408C414C2, C4.199(D4×D5), C10.59(C4×D4), C20.358(C2×D4), (C2×C8).164D10, (C2×C10)⋊6M4(2), D101C821C2, C23.24(C4×D5), C10.49(C8○D4), C221(C8⋊D5), C20.8Q821C2, C23.D5.14C4, D10⋊C4.20C4, C20.300(C4○D4), (C2×C40).174C22, (C2×C20).825C23, C10.D4.20C4, (C22×C4).305D10, C10.40(C2×M4(2)), C4.126(D42D5), C2.13(Dic54D4), C2.11(D20.2C4), (C22×C20).339C22, (C4×Dic5).203C22, (C2×C4).64(C4×D5), (C2×C8⋊D5)⋊14C2, (C5×C22⋊C8)⋊19C2, (C4×C5⋊D4).14C2, C2.10(C2×C8⋊D5), (C2×C5⋊D4).16C4, C22.107(C2×C4×D5), (C2×C20).328(C2×C4), (C22×C52C8)⋊17C2, (C2×C4×D5).231C22, (C2×Dic5).20(C2×C4), (C22×D5).19(C2×C4), (C2×C4).767(C22×D5), (C22×C10).111(C2×C4), (C2×C10).181(C22×C4), (C2×C52C8).310C22, SmallGroup(320,357)

Series: Derived Chief Lower central Upper central

C1C2×C10 — C52C826D4
C1C5C10C20C2×C20C2×C4×D5C4×C5⋊D4 — C52C826D4
C5C2×C10 — C52C826D4
C1C2×C4C22⋊C8

Generators and relations for C52C826D4
 G = < a,b,c,d | a5=b8=c4=d2=1, bab-1=cac-1=a-1, ad=da, cbc-1=b5, bd=db, dcd=c-1 >

Subgroups: 398 in 124 conjugacy classes, 53 normal (47 characteristic)
C1, C2, C2, C4, C4, C22, C22, C22, C5, C8, C2×C4, C2×C4, D4, C23, C23, D5, C10, C10, C42, C22⋊C4, C4⋊C4, C2×C8, C2×C8, M4(2), C22×C4, C22×C4, C2×D4, Dic5, C20, C20, D10, C2×C10, C2×C10, C2×C10, C8⋊C4, C22⋊C8, C22⋊C8, C4⋊C8, C4×D4, C22×C8, C2×M4(2), C52C8, C52C8, C40, C4×D5, C2×Dic5, C5⋊D4, C2×C20, C2×C20, C22×D5, C22×C10, C89D4, C8⋊D5, C2×C52C8, C2×C52C8, C4×Dic5, C10.D4, D10⋊C4, C23.D5, C2×C40, C2×C4×D5, C2×C5⋊D4, C22×C20, C20.8Q8, C408C4, D101C8, C5×C22⋊C8, C2×C8⋊D5, C22×C52C8, C4×C5⋊D4, C52C826D4
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, D5, M4(2), C22×C4, C2×D4, C4○D4, D10, C4×D4, C2×M4(2), C8○D4, C4×D5, C22×D5, C89D4, C8⋊D5, C2×C4×D5, D4×D5, D42D5, Dic54D4, C2×C8⋊D5, D20.2C4, C52C826D4

Smallest permutation representation of C52C826D4
On 160 points
Generators in S160
(1 139 41 36 147)(2 148 37 42 140)(3 141 43 38 149)(4 150 39 44 142)(5 143 45 40 151)(6 152 33 46 144)(7 137 47 34 145)(8 146 35 48 138)(9 63 126 94 118)(10 119 95 127 64)(11 57 128 96 120)(12 113 89 121 58)(13 59 122 90 114)(14 115 91 123 60)(15 61 124 92 116)(16 117 93 125 62)(17 134 84 76 53)(18 54 77 85 135)(19 136 86 78 55)(20 56 79 87 129)(21 130 88 80 49)(22 50 73 81 131)(23 132 82 74 51)(24 52 75 83 133)(25 160 109 98 72)(26 65 99 110 153)(27 154 111 100 66)(28 67 101 112 155)(29 156 105 102 68)(30 69 103 106 157)(31 158 107 104 70)(32 71 97 108 159)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128)(129 130 131 132 133 134 135 136)(137 138 139 140 141 142 143 144)(145 146 147 148 149 150 151 152)(153 154 155 156 157 158 159 160)
(1 52 16 111)(2 49 9 108)(3 54 10 105)(4 51 11 110)(5 56 12 107)(6 53 13 112)(7 50 14 109)(8 55 15 106)(17 114 155 144)(18 119 156 141)(19 116 157 138)(20 113 158 143)(21 118 159 140)(22 115 160 137)(23 120 153 142)(24 117 154 139)(25 47 131 91)(26 44 132 96)(27 41 133 93)(28 46 134 90)(29 43 135 95)(30 48 136 92)(31 45 129 89)(32 42 130 94)(33 84 122 67)(34 81 123 72)(35 86 124 69)(36 83 125 66)(37 88 126 71)(38 85 127 68)(39 82 128 65)(40 87 121 70)(57 99 150 74)(58 104 151 79)(59 101 152 76)(60 98 145 73)(61 103 146 78)(62 100 147 75)(63 97 148 80)(64 102 149 77)
(1 52)(2 53)(3 54)(4 55)(5 56)(6 49)(7 50)(8 51)(9 112)(10 105)(11 106)(12 107)(13 108)(14 109)(15 110)(16 111)(17 148)(18 149)(19 150)(20 151)(21 152)(22 145)(23 146)(24 147)(25 123)(26 124)(27 125)(28 126)(29 127)(30 128)(31 121)(32 122)(33 130)(34 131)(35 132)(36 133)(37 134)(38 135)(39 136)(40 129)(41 83)(42 84)(43 85)(44 86)(45 87)(46 88)(47 81)(48 82)(57 157)(58 158)(59 159)(60 160)(61 153)(62 154)(63 155)(64 156)(65 92)(66 93)(67 94)(68 95)(69 96)(70 89)(71 90)(72 91)(73 137)(74 138)(75 139)(76 140)(77 141)(78 142)(79 143)(80 144)(97 114)(98 115)(99 116)(100 117)(101 118)(102 119)(103 120)(104 113)

G:=sub<Sym(160)| (1,139,41,36,147)(2,148,37,42,140)(3,141,43,38,149)(4,150,39,44,142)(5,143,45,40,151)(6,152,33,46,144)(7,137,47,34,145)(8,146,35,48,138)(9,63,126,94,118)(10,119,95,127,64)(11,57,128,96,120)(12,113,89,121,58)(13,59,122,90,114)(14,115,91,123,60)(15,61,124,92,116)(16,117,93,125,62)(17,134,84,76,53)(18,54,77,85,135)(19,136,86,78,55)(20,56,79,87,129)(21,130,88,80,49)(22,50,73,81,131)(23,132,82,74,51)(24,52,75,83,133)(25,160,109,98,72)(26,65,99,110,153)(27,154,111,100,66)(28,67,101,112,155)(29,156,105,102,68)(30,69,103,106,157)(31,158,107,104,70)(32,71,97,108,159), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152)(153,154,155,156,157,158,159,160), (1,52,16,111)(2,49,9,108)(3,54,10,105)(4,51,11,110)(5,56,12,107)(6,53,13,112)(7,50,14,109)(8,55,15,106)(17,114,155,144)(18,119,156,141)(19,116,157,138)(20,113,158,143)(21,118,159,140)(22,115,160,137)(23,120,153,142)(24,117,154,139)(25,47,131,91)(26,44,132,96)(27,41,133,93)(28,46,134,90)(29,43,135,95)(30,48,136,92)(31,45,129,89)(32,42,130,94)(33,84,122,67)(34,81,123,72)(35,86,124,69)(36,83,125,66)(37,88,126,71)(38,85,127,68)(39,82,128,65)(40,87,121,70)(57,99,150,74)(58,104,151,79)(59,101,152,76)(60,98,145,73)(61,103,146,78)(62,100,147,75)(63,97,148,80)(64,102,149,77), (1,52)(2,53)(3,54)(4,55)(5,56)(6,49)(7,50)(8,51)(9,112)(10,105)(11,106)(12,107)(13,108)(14,109)(15,110)(16,111)(17,148)(18,149)(19,150)(20,151)(21,152)(22,145)(23,146)(24,147)(25,123)(26,124)(27,125)(28,126)(29,127)(30,128)(31,121)(32,122)(33,130)(34,131)(35,132)(36,133)(37,134)(38,135)(39,136)(40,129)(41,83)(42,84)(43,85)(44,86)(45,87)(46,88)(47,81)(48,82)(57,157)(58,158)(59,159)(60,160)(61,153)(62,154)(63,155)(64,156)(65,92)(66,93)(67,94)(68,95)(69,96)(70,89)(71,90)(72,91)(73,137)(74,138)(75,139)(76,140)(77,141)(78,142)(79,143)(80,144)(97,114)(98,115)(99,116)(100,117)(101,118)(102,119)(103,120)(104,113)>;

G:=Group( (1,139,41,36,147)(2,148,37,42,140)(3,141,43,38,149)(4,150,39,44,142)(5,143,45,40,151)(6,152,33,46,144)(7,137,47,34,145)(8,146,35,48,138)(9,63,126,94,118)(10,119,95,127,64)(11,57,128,96,120)(12,113,89,121,58)(13,59,122,90,114)(14,115,91,123,60)(15,61,124,92,116)(16,117,93,125,62)(17,134,84,76,53)(18,54,77,85,135)(19,136,86,78,55)(20,56,79,87,129)(21,130,88,80,49)(22,50,73,81,131)(23,132,82,74,51)(24,52,75,83,133)(25,160,109,98,72)(26,65,99,110,153)(27,154,111,100,66)(28,67,101,112,155)(29,156,105,102,68)(30,69,103,106,157)(31,158,107,104,70)(32,71,97,108,159), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152)(153,154,155,156,157,158,159,160), (1,52,16,111)(2,49,9,108)(3,54,10,105)(4,51,11,110)(5,56,12,107)(6,53,13,112)(7,50,14,109)(8,55,15,106)(17,114,155,144)(18,119,156,141)(19,116,157,138)(20,113,158,143)(21,118,159,140)(22,115,160,137)(23,120,153,142)(24,117,154,139)(25,47,131,91)(26,44,132,96)(27,41,133,93)(28,46,134,90)(29,43,135,95)(30,48,136,92)(31,45,129,89)(32,42,130,94)(33,84,122,67)(34,81,123,72)(35,86,124,69)(36,83,125,66)(37,88,126,71)(38,85,127,68)(39,82,128,65)(40,87,121,70)(57,99,150,74)(58,104,151,79)(59,101,152,76)(60,98,145,73)(61,103,146,78)(62,100,147,75)(63,97,148,80)(64,102,149,77), (1,52)(2,53)(3,54)(4,55)(5,56)(6,49)(7,50)(8,51)(9,112)(10,105)(11,106)(12,107)(13,108)(14,109)(15,110)(16,111)(17,148)(18,149)(19,150)(20,151)(21,152)(22,145)(23,146)(24,147)(25,123)(26,124)(27,125)(28,126)(29,127)(30,128)(31,121)(32,122)(33,130)(34,131)(35,132)(36,133)(37,134)(38,135)(39,136)(40,129)(41,83)(42,84)(43,85)(44,86)(45,87)(46,88)(47,81)(48,82)(57,157)(58,158)(59,159)(60,160)(61,153)(62,154)(63,155)(64,156)(65,92)(66,93)(67,94)(68,95)(69,96)(70,89)(71,90)(72,91)(73,137)(74,138)(75,139)(76,140)(77,141)(78,142)(79,143)(80,144)(97,114)(98,115)(99,116)(100,117)(101,118)(102,119)(103,120)(104,113) );

G=PermutationGroup([[(1,139,41,36,147),(2,148,37,42,140),(3,141,43,38,149),(4,150,39,44,142),(5,143,45,40,151),(6,152,33,46,144),(7,137,47,34,145),(8,146,35,48,138),(9,63,126,94,118),(10,119,95,127,64),(11,57,128,96,120),(12,113,89,121,58),(13,59,122,90,114),(14,115,91,123,60),(15,61,124,92,116),(16,117,93,125,62),(17,134,84,76,53),(18,54,77,85,135),(19,136,86,78,55),(20,56,79,87,129),(21,130,88,80,49),(22,50,73,81,131),(23,132,82,74,51),(24,52,75,83,133),(25,160,109,98,72),(26,65,99,110,153),(27,154,111,100,66),(28,67,101,112,155),(29,156,105,102,68),(30,69,103,106,157),(31,158,107,104,70),(32,71,97,108,159)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128),(129,130,131,132,133,134,135,136),(137,138,139,140,141,142,143,144),(145,146,147,148,149,150,151,152),(153,154,155,156,157,158,159,160)], [(1,52,16,111),(2,49,9,108),(3,54,10,105),(4,51,11,110),(5,56,12,107),(6,53,13,112),(7,50,14,109),(8,55,15,106),(17,114,155,144),(18,119,156,141),(19,116,157,138),(20,113,158,143),(21,118,159,140),(22,115,160,137),(23,120,153,142),(24,117,154,139),(25,47,131,91),(26,44,132,96),(27,41,133,93),(28,46,134,90),(29,43,135,95),(30,48,136,92),(31,45,129,89),(32,42,130,94),(33,84,122,67),(34,81,123,72),(35,86,124,69),(36,83,125,66),(37,88,126,71),(38,85,127,68),(39,82,128,65),(40,87,121,70),(57,99,150,74),(58,104,151,79),(59,101,152,76),(60,98,145,73),(61,103,146,78),(62,100,147,75),(63,97,148,80),(64,102,149,77)], [(1,52),(2,53),(3,54),(4,55),(5,56),(6,49),(7,50),(8,51),(9,112),(10,105),(11,106),(12,107),(13,108),(14,109),(15,110),(16,111),(17,148),(18,149),(19,150),(20,151),(21,152),(22,145),(23,146),(24,147),(25,123),(26,124),(27,125),(28,126),(29,127),(30,128),(31,121),(32,122),(33,130),(34,131),(35,132),(36,133),(37,134),(38,135),(39,136),(40,129),(41,83),(42,84),(43,85),(44,86),(45,87),(46,88),(47,81),(48,82),(57,157),(58,158),(59,159),(60,160),(61,153),(62,154),(63,155),(64,156),(65,92),(66,93),(67,94),(68,95),(69,96),(70,89),(71,90),(72,91),(73,137),(74,138),(75,139),(76,140),(77,141),(78,142),(79,143),(80,144),(97,114),(98,115),(99,116),(100,117),(101,118),(102,119),(103,120),(104,113)]])

68 conjugacy classes

class 1 2A2B2C2D2E2F4A4B4C4D4E4F4G4H4I5A5B8A8B8C8D8E···8L10A···10F10G10H10I10J20A···20H20I20J20K20L40A···40P
order12222224444444445588888···810···101010101020···202020202040···40
size1111222011112220202022444410···102···244442···244444···4

68 irreducible representations

dim1111111111112222222222444
type+++++++++++++-
imageC1C2C2C2C2C2C2C2C4C4C4C4D4D5C4○D4M4(2)D10D10C8○D4C4×D5C4×D5C8⋊D5D4×D5D42D5D20.2C4
kernelC52C826D4C20.8Q8C408C4D101C8C5×C22⋊C8C2×C8⋊D5C22×C52C8C4×C5⋊D4C10.D4D10⋊C4C23.D5C2×C5⋊D4C52C8C22⋊C8C20C2×C10C2×C8C22×C4C10C2×C4C23C22C4C4C2
# reps11111111222222244244416224

Matrix representation of C52C826D4 in GL4(𝔽41) generated by

1000
0100
003540
003640
,
40000
04000
002210
00419
,
04000
1000
0061
00635
,
0100
1000
0010
0001
G:=sub<GL(4,GF(41))| [1,0,0,0,0,1,0,0,0,0,35,36,0,0,40,40],[40,0,0,0,0,40,0,0,0,0,22,4,0,0,10,19],[0,1,0,0,40,0,0,0,0,0,6,6,0,0,1,35],[0,1,0,0,1,0,0,0,0,0,1,0,0,0,0,1] >;

C52C826D4 in GAP, Magma, Sage, TeX

C_5\rtimes_2C_8\rtimes_{26}D_4
% in TeX

G:=Group("C5:2C8:26D4");
// GroupNames label

G:=SmallGroup(320,357);
// by ID

G=gap.SmallGroup(320,357);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,253,758,219,58,136,12550]);
// Polycyclic

G:=Group<a,b,c,d|a^5=b^8=c^4=d^2=1,b*a*b^-1=c*a*c^-1=a^-1,a*d=d*a,c*b*c^-1=b^5,b*d=d*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽