Copied to
clipboard

G = C2×D20.2C4order 320 = 26·5

Direct product of C2 and D20.2C4

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C2×D20.2C4, C20.69C24, C40.46C23, M4(2)⋊25D10, C104(C8○D4), C4○D20.8C4, (C2×D20).28C4, D20.42(C2×C4), (C2×C8).279D10, (C8×D5)⋊22C22, C8.43(C22×D5), C23.30(C4×D5), C4.68(C23×D5), C8⋊D518C22, (C10×M4(2))⋊9C2, (C2×M4(2))⋊17D5, C10.53(C23×C4), C52C8.42C23, (C4×D5).71C23, (C2×C40).238C22, C20.151(C22×C4), (C2×C20).882C23, Dic10.44(C2×C4), (C2×Dic10).29C4, C4○D20.49C22, D10.22(C22×C4), (C22×C4).374D10, (C5×M4(2))⋊25C22, Dic5.21(C22×C4), (C22×C20).264C22, C55(C2×C8○D4), (D5×C2×C8)⋊29C2, C4.123(C2×C4×D5), C22.8(C2×C4×D5), (C2×C4).87(C4×D5), C5⋊D4.7(C2×C4), (C2×C8⋊D5)⋊27C2, C2.33(D5×C22×C4), (C4×D5).60(C2×C4), (C2×C5⋊D4).23C4, (C2×C20).304(C2×C4), (C2×C52C8)⋊33C22, (C22×C52C8)⋊10C2, (C2×C4○D20).21C2, (C2×C4×D5).386C22, (C22×D5).83(C2×C4), (C2×C4).825(C22×D5), (C2×C10).126(C22×C4), (C22×C10).146(C2×C4), (C2×Dic5).117(C2×C4), SmallGroup(320,1416)

Series: Derived Chief Lower central Upper central

C1C10 — C2×D20.2C4
C1C5C10C20C4×D5C2×C4×D5C2×C4○D20 — C2×D20.2C4
C5C10 — C2×D20.2C4
C1C2×C4C2×M4(2)

Generators and relations for C2×D20.2C4
 G = < a,b,c,d | a2=b20=c2=1, d4=b10, ab=ba, ac=ca, ad=da, cbc=b-1, dbd-1=b11, dcd-1=b10c >

Subgroups: 718 in 266 conjugacy classes, 151 normal (27 characteristic)
C1, C2, C2, C2, C4, C4, C4, C22, C22, C22, C5, C8, C8, C2×C4, C2×C4, C2×C4, D4, Q8, C23, C23, D5, C10, C10, C10, C2×C8, C2×C8, M4(2), M4(2), C22×C4, C22×C4, C2×D4, C2×Q8, C4○D4, Dic5, C20, C20, D10, D10, C2×C10, C2×C10, C2×C10, C22×C8, C2×M4(2), C2×M4(2), C8○D4, C2×C4○D4, C52C8, C40, Dic10, C4×D5, D20, C2×Dic5, C5⋊D4, C2×C20, C2×C20, C22×D5, C22×C10, C2×C8○D4, C8×D5, C8⋊D5, C2×C52C8, C2×C52C8, C2×C40, C5×M4(2), C2×Dic10, C2×C4×D5, C2×D20, C4○D20, C2×C5⋊D4, C22×C20, D5×C2×C8, C2×C8⋊D5, D20.2C4, C22×C52C8, C10×M4(2), C2×C4○D20, C2×D20.2C4
Quotients: C1, C2, C4, C22, C2×C4, C23, D5, C22×C4, C24, D10, C8○D4, C23×C4, C4×D5, C22×D5, C2×C8○D4, C2×C4×D5, C23×D5, D20.2C4, D5×C22×C4, C2×D20.2C4

Smallest permutation representation of C2×D20.2C4
On 160 points
Generators in S160
(1 108)(2 109)(3 110)(4 111)(5 112)(6 113)(7 114)(8 115)(9 116)(10 117)(11 118)(12 119)(13 120)(14 101)(15 102)(16 103)(17 104)(18 105)(19 106)(20 107)(21 131)(22 132)(23 133)(24 134)(25 135)(26 136)(27 137)(28 138)(29 139)(30 140)(31 121)(32 122)(33 123)(34 124)(35 125)(36 126)(37 127)(38 128)(39 129)(40 130)(41 87)(42 88)(43 89)(44 90)(45 91)(46 92)(47 93)(48 94)(49 95)(50 96)(51 97)(52 98)(53 99)(54 100)(55 81)(56 82)(57 83)(58 84)(59 85)(60 86)(61 152)(62 153)(63 154)(64 155)(65 156)(66 157)(67 158)(68 159)(69 160)(70 141)(71 142)(72 143)(73 144)(74 145)(75 146)(76 147)(77 148)(78 149)(79 150)(80 151)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 112)(2 111)(3 110)(4 109)(5 108)(6 107)(7 106)(8 105)(9 104)(10 103)(11 102)(12 101)(13 120)(14 119)(15 118)(16 117)(17 116)(18 115)(19 114)(20 113)(21 135)(22 134)(23 133)(24 132)(25 131)(26 130)(27 129)(28 128)(29 127)(30 126)(31 125)(32 124)(33 123)(34 122)(35 121)(36 140)(37 139)(38 138)(39 137)(40 136)(41 85)(42 84)(43 83)(44 82)(45 81)(46 100)(47 99)(48 98)(49 97)(50 96)(51 95)(52 94)(53 93)(54 92)(55 91)(56 90)(57 89)(58 88)(59 87)(60 86)(61 144)(62 143)(63 142)(64 141)(65 160)(66 159)(67 158)(68 157)(69 156)(70 155)(71 154)(72 153)(73 152)(74 151)(75 150)(76 149)(77 148)(78 147)(79 146)(80 145)
(1 126 84 70 11 136 94 80)(2 137 85 61 12 127 95 71)(3 128 86 72 13 138 96 62)(4 139 87 63 14 129 97 73)(5 130 88 74 15 140 98 64)(6 121 89 65 16 131 99 75)(7 132 90 76 17 122 100 66)(8 123 91 67 18 133 81 77)(9 134 92 78 19 124 82 68)(10 125 93 69 20 135 83 79)(21 53 146 113 31 43 156 103)(22 44 147 104 32 54 157 114)(23 55 148 115 33 45 158 105)(24 46 149 106 34 56 159 116)(25 57 150 117 35 47 160 107)(26 48 151 108 36 58 141 118)(27 59 152 119 37 49 142 109)(28 50 153 110 38 60 143 120)(29 41 154 101 39 51 144 111)(30 52 155 112 40 42 145 102)

G:=sub<Sym(160)| (1,108)(2,109)(3,110)(4,111)(5,112)(6,113)(7,114)(8,115)(9,116)(10,117)(11,118)(12,119)(13,120)(14,101)(15,102)(16,103)(17,104)(18,105)(19,106)(20,107)(21,131)(22,132)(23,133)(24,134)(25,135)(26,136)(27,137)(28,138)(29,139)(30,140)(31,121)(32,122)(33,123)(34,124)(35,125)(36,126)(37,127)(38,128)(39,129)(40,130)(41,87)(42,88)(43,89)(44,90)(45,91)(46,92)(47,93)(48,94)(49,95)(50,96)(51,97)(52,98)(53,99)(54,100)(55,81)(56,82)(57,83)(58,84)(59,85)(60,86)(61,152)(62,153)(63,154)(64,155)(65,156)(66,157)(67,158)(68,159)(69,160)(70,141)(71,142)(72,143)(73,144)(74,145)(75,146)(76,147)(77,148)(78,149)(79,150)(80,151), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,112)(2,111)(3,110)(4,109)(5,108)(6,107)(7,106)(8,105)(9,104)(10,103)(11,102)(12,101)(13,120)(14,119)(15,118)(16,117)(17,116)(18,115)(19,114)(20,113)(21,135)(22,134)(23,133)(24,132)(25,131)(26,130)(27,129)(28,128)(29,127)(30,126)(31,125)(32,124)(33,123)(34,122)(35,121)(36,140)(37,139)(38,138)(39,137)(40,136)(41,85)(42,84)(43,83)(44,82)(45,81)(46,100)(47,99)(48,98)(49,97)(50,96)(51,95)(52,94)(53,93)(54,92)(55,91)(56,90)(57,89)(58,88)(59,87)(60,86)(61,144)(62,143)(63,142)(64,141)(65,160)(66,159)(67,158)(68,157)(69,156)(70,155)(71,154)(72,153)(73,152)(74,151)(75,150)(76,149)(77,148)(78,147)(79,146)(80,145), (1,126,84,70,11,136,94,80)(2,137,85,61,12,127,95,71)(3,128,86,72,13,138,96,62)(4,139,87,63,14,129,97,73)(5,130,88,74,15,140,98,64)(6,121,89,65,16,131,99,75)(7,132,90,76,17,122,100,66)(8,123,91,67,18,133,81,77)(9,134,92,78,19,124,82,68)(10,125,93,69,20,135,83,79)(21,53,146,113,31,43,156,103)(22,44,147,104,32,54,157,114)(23,55,148,115,33,45,158,105)(24,46,149,106,34,56,159,116)(25,57,150,117,35,47,160,107)(26,48,151,108,36,58,141,118)(27,59,152,119,37,49,142,109)(28,50,153,110,38,60,143,120)(29,41,154,101,39,51,144,111)(30,52,155,112,40,42,145,102)>;

G:=Group( (1,108)(2,109)(3,110)(4,111)(5,112)(6,113)(7,114)(8,115)(9,116)(10,117)(11,118)(12,119)(13,120)(14,101)(15,102)(16,103)(17,104)(18,105)(19,106)(20,107)(21,131)(22,132)(23,133)(24,134)(25,135)(26,136)(27,137)(28,138)(29,139)(30,140)(31,121)(32,122)(33,123)(34,124)(35,125)(36,126)(37,127)(38,128)(39,129)(40,130)(41,87)(42,88)(43,89)(44,90)(45,91)(46,92)(47,93)(48,94)(49,95)(50,96)(51,97)(52,98)(53,99)(54,100)(55,81)(56,82)(57,83)(58,84)(59,85)(60,86)(61,152)(62,153)(63,154)(64,155)(65,156)(66,157)(67,158)(68,159)(69,160)(70,141)(71,142)(72,143)(73,144)(74,145)(75,146)(76,147)(77,148)(78,149)(79,150)(80,151), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,112)(2,111)(3,110)(4,109)(5,108)(6,107)(7,106)(8,105)(9,104)(10,103)(11,102)(12,101)(13,120)(14,119)(15,118)(16,117)(17,116)(18,115)(19,114)(20,113)(21,135)(22,134)(23,133)(24,132)(25,131)(26,130)(27,129)(28,128)(29,127)(30,126)(31,125)(32,124)(33,123)(34,122)(35,121)(36,140)(37,139)(38,138)(39,137)(40,136)(41,85)(42,84)(43,83)(44,82)(45,81)(46,100)(47,99)(48,98)(49,97)(50,96)(51,95)(52,94)(53,93)(54,92)(55,91)(56,90)(57,89)(58,88)(59,87)(60,86)(61,144)(62,143)(63,142)(64,141)(65,160)(66,159)(67,158)(68,157)(69,156)(70,155)(71,154)(72,153)(73,152)(74,151)(75,150)(76,149)(77,148)(78,147)(79,146)(80,145), (1,126,84,70,11,136,94,80)(2,137,85,61,12,127,95,71)(3,128,86,72,13,138,96,62)(4,139,87,63,14,129,97,73)(5,130,88,74,15,140,98,64)(6,121,89,65,16,131,99,75)(7,132,90,76,17,122,100,66)(8,123,91,67,18,133,81,77)(9,134,92,78,19,124,82,68)(10,125,93,69,20,135,83,79)(21,53,146,113,31,43,156,103)(22,44,147,104,32,54,157,114)(23,55,148,115,33,45,158,105)(24,46,149,106,34,56,159,116)(25,57,150,117,35,47,160,107)(26,48,151,108,36,58,141,118)(27,59,152,119,37,49,142,109)(28,50,153,110,38,60,143,120)(29,41,154,101,39,51,144,111)(30,52,155,112,40,42,145,102) );

G=PermutationGroup([[(1,108),(2,109),(3,110),(4,111),(5,112),(6,113),(7,114),(8,115),(9,116),(10,117),(11,118),(12,119),(13,120),(14,101),(15,102),(16,103),(17,104),(18,105),(19,106),(20,107),(21,131),(22,132),(23,133),(24,134),(25,135),(26,136),(27,137),(28,138),(29,139),(30,140),(31,121),(32,122),(33,123),(34,124),(35,125),(36,126),(37,127),(38,128),(39,129),(40,130),(41,87),(42,88),(43,89),(44,90),(45,91),(46,92),(47,93),(48,94),(49,95),(50,96),(51,97),(52,98),(53,99),(54,100),(55,81),(56,82),(57,83),(58,84),(59,85),(60,86),(61,152),(62,153),(63,154),(64,155),(65,156),(66,157),(67,158),(68,159),(69,160),(70,141),(71,142),(72,143),(73,144),(74,145),(75,146),(76,147),(77,148),(78,149),(79,150),(80,151)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,112),(2,111),(3,110),(4,109),(5,108),(6,107),(7,106),(8,105),(9,104),(10,103),(11,102),(12,101),(13,120),(14,119),(15,118),(16,117),(17,116),(18,115),(19,114),(20,113),(21,135),(22,134),(23,133),(24,132),(25,131),(26,130),(27,129),(28,128),(29,127),(30,126),(31,125),(32,124),(33,123),(34,122),(35,121),(36,140),(37,139),(38,138),(39,137),(40,136),(41,85),(42,84),(43,83),(44,82),(45,81),(46,100),(47,99),(48,98),(49,97),(50,96),(51,95),(52,94),(53,93),(54,92),(55,91),(56,90),(57,89),(58,88),(59,87),(60,86),(61,144),(62,143),(63,142),(64,141),(65,160),(66,159),(67,158),(68,157),(69,156),(70,155),(71,154),(72,153),(73,152),(74,151),(75,150),(76,149),(77,148),(78,147),(79,146),(80,145)], [(1,126,84,70,11,136,94,80),(2,137,85,61,12,127,95,71),(3,128,86,72,13,138,96,62),(4,139,87,63,14,129,97,73),(5,130,88,74,15,140,98,64),(6,121,89,65,16,131,99,75),(7,132,90,76,17,122,100,66),(8,123,91,67,18,133,81,77),(9,134,92,78,19,124,82,68),(10,125,93,69,20,135,83,79),(21,53,146,113,31,43,156,103),(22,44,147,104,32,54,157,114),(23,55,148,115,33,45,158,105),(24,46,149,106,34,56,159,116),(25,57,150,117,35,47,160,107),(26,48,151,108,36,58,141,118),(27,59,152,119,37,49,142,109),(28,50,153,110,38,60,143,120),(29,41,154,101,39,51,144,111),(30,52,155,112,40,42,145,102)]])

80 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I4A4B4C4D4E4F4G4H4I4J5A5B8A···8H8I···8P8Q8R8S8T10A···10F10G10H10I10J20A···20H20I20J20K20L40A···40P
order12222222224444444444558···88···8888810···101010101020···202020202040···40
size1111221010101011112210101010222···25···5101010102···244442···244444···4

80 irreducible representations

dim1111111111122222224
type+++++++++++
imageC1C2C2C2C2C2C2C4C4C4C4D5D10D10D10C8○D4C4×D5C4×D5D20.2C4
kernelC2×D20.2C4D5×C2×C8C2×C8⋊D5D20.2C4C22×C52C8C10×M4(2)C2×C4○D20C2×Dic10C2×D20C4○D20C2×C5⋊D4C2×M4(2)C2×C8M4(2)C22×C4C10C2×C4C23C2
# reps12281112284248281248

Matrix representation of C2×D20.2C4 in GL4(𝔽41) generated by

40000
04000
00400
00040
,
344000
1000
00320
00239
,
7100
343400
00401
0001
,
32000
03200
001427
002827
G:=sub<GL(4,GF(41))| [40,0,0,0,0,40,0,0,0,0,40,0,0,0,0,40],[34,1,0,0,40,0,0,0,0,0,32,23,0,0,0,9],[7,34,0,0,1,34,0,0,0,0,40,0,0,0,1,1],[32,0,0,0,0,32,0,0,0,0,14,28,0,0,27,27] >;

C2×D20.2C4 in GAP, Magma, Sage, TeX

C_2\times D_{20}._2C_4
% in TeX

G:=Group("C2xD20.2C4");
// GroupNames label

G:=SmallGroup(320,1416);
// by ID

G=gap.SmallGroup(320,1416);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,758,297,80,102,12550]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^20=c^2=1,d^4=b^10,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c=b^-1,d*b*d^-1=b^11,d*c*d^-1=b^10*c>;
// generators/relations

׿
×
𝔽