Extensions 1→N→G→Q→1 with N=C4×D4 and Q=D5

Direct product G=N×Q with N=C4×D4 and Q=D5
dρLabelID
C4×D4×D580C4xD4xD5320,1216

Semidirect products G=N:Q with N=C4×D4 and Q=D5
extensionφ:Q→Out NdρLabelID
(C4×D4)⋊1D5 = C4×D4⋊D5φ: D5/C5C2 ⊆ Out C4×D4160(C4xD4):1D5320,640
(C4×D4)⋊2D5 = C42.48D10φ: D5/C5C2 ⊆ Out C4×D4160(C4xD4):2D5320,641
(C4×D4)⋊3D5 = C207D8φ: D5/C5C2 ⊆ Out C4×D4160(C4xD4):3D5320,642
(C4×D4)⋊4D5 = D4.1D20φ: D5/C5C2 ⊆ Out C4×D4160(C4xD4):4D5320,643
(C4×D4)⋊5D5 = C42.102D10φ: D5/C5C2 ⊆ Out C4×D4160(C4xD4):5D5320,1210
(C4×D4)⋊6D5 = C42.104D10φ: D5/C5C2 ⊆ Out C4×D4160(C4xD4):6D5320,1212
(C4×D4)⋊7D5 = C4211D10φ: D5/C5C2 ⊆ Out C4×D480(C4xD4):7D5320,1217
(C4×D4)⋊8D5 = C42.108D10φ: D5/C5C2 ⊆ Out C4×D4160(C4xD4):8D5320,1218
(C4×D4)⋊9D5 = C4212D10φ: D5/C5C2 ⊆ Out C4×D480(C4xD4):9D5320,1219
(C4×D4)⋊10D5 = C42.228D10φ: D5/C5C2 ⊆ Out C4×D4160(C4xD4):10D5320,1220
(C4×D4)⋊11D5 = D4×D20φ: D5/C5C2 ⊆ Out C4×D480(C4xD4):11D5320,1221
(C4×D4)⋊12D5 = D2023D4φ: D5/C5C2 ⊆ Out C4×D480(C4xD4):12D5320,1222
(C4×D4)⋊13D5 = D2024D4φ: D5/C5C2 ⊆ Out C4×D4160(C4xD4):13D5320,1223
(C4×D4)⋊14D5 = Dic1023D4φ: D5/C5C2 ⊆ Out C4×D4160(C4xD4):14D5320,1224
(C4×D4)⋊15D5 = Dic1024D4φ: D5/C5C2 ⊆ Out C4×D4160(C4xD4):15D5320,1225
(C4×D4)⋊16D5 = D45D20φ: D5/C5C2 ⊆ Out C4×D480(C4xD4):16D5320,1226
(C4×D4)⋊17D5 = D46D20φ: D5/C5C2 ⊆ Out C4×D4160(C4xD4):17D5320,1227
(C4×D4)⋊18D5 = C4216D10φ: D5/C5C2 ⊆ Out C4×D480(C4xD4):18D5320,1228
(C4×D4)⋊19D5 = C42.229D10φ: D5/C5C2 ⊆ Out C4×D4160(C4xD4):19D5320,1229
(C4×D4)⋊20D5 = C42.113D10φ: D5/C5C2 ⊆ Out C4×D4160(C4xD4):20D5320,1230
(C4×D4)⋊21D5 = C42.114D10φ: D5/C5C2 ⊆ Out C4×D4160(C4xD4):21D5320,1231
(C4×D4)⋊22D5 = C4217D10φ: D5/C5C2 ⊆ Out C4×D480(C4xD4):22D5320,1232
(C4×D4)⋊23D5 = C42.115D10φ: D5/C5C2 ⊆ Out C4×D4160(C4xD4):23D5320,1233
(C4×D4)⋊24D5 = C42.116D10φ: D5/C5C2 ⊆ Out C4×D4160(C4xD4):24D5320,1234
(C4×D4)⋊25D5 = C42.117D10φ: D5/C5C2 ⊆ Out C4×D4160(C4xD4):25D5320,1235
(C4×D4)⋊26D5 = C42.118D10φ: D5/C5C2 ⊆ Out C4×D4160(C4xD4):26D5320,1236
(C4×D4)⋊27D5 = C42.119D10φ: D5/C5C2 ⊆ Out C4×D4160(C4xD4):27D5320,1237
(C4×D4)⋊28D5 = C4×D42D5φ: trivial image160(C4xD4):28D5320,1208

Non-split extensions G=N.Q with N=C4×D4 and Q=D5
extensionφ:Q→Out NdρLabelID
(C4×D4).1D5 = C20.57D8φ: D5/C5C2 ⊆ Out C4×D4160(C4xD4).1D5320,92
(C4×D4).2D5 = C20.50D8φ: D5/C5C2 ⊆ Out C4×D4160(C4xD4).2D5320,634
(C4×D4).3D5 = C20.38SD16φ: D5/C5C2 ⊆ Out C4×D4160(C4xD4).3D5320,635
(C4×D4).4D5 = D4.3Dic10φ: D5/C5C2 ⊆ Out C4×D4160(C4xD4).4D5320,636
(C4×D4).5D5 = C42.47D10φ: D5/C5C2 ⊆ Out C4×D4160(C4xD4).5D5320,638
(C4×D4).6D5 = C207M4(2)φ: D5/C5C2 ⊆ Out C4×D4160(C4xD4).6D5320,639
(C4×D4).7D5 = C4×D4.D5φ: D5/C5C2 ⊆ Out C4×D4160(C4xD4).7D5320,644
(C4×D4).8D5 = C42.51D10φ: D5/C5C2 ⊆ Out C4×D4160(C4xD4).8D5320,645
(C4×D4).9D5 = D4.2D20φ: D5/C5C2 ⊆ Out C4×D4160(C4xD4).9D5320,646
(C4×D4).10D5 = D4×Dic10φ: D5/C5C2 ⊆ Out C4×D4160(C4xD4).10D5320,1209
(C4×D4).11D5 = D45Dic10φ: D5/C5C2 ⊆ Out C4×D4160(C4xD4).11D5320,1211
(C4×D4).12D5 = C42.105D10φ: D5/C5C2 ⊆ Out C4×D4160(C4xD4).12D5320,1213
(C4×D4).13D5 = C42.106D10φ: D5/C5C2 ⊆ Out C4×D4160(C4xD4).13D5320,1214
(C4×D4).14D5 = D46Dic10φ: D5/C5C2 ⊆ Out C4×D4160(C4xD4).14D5320,1215
(C4×D4).15D5 = D4×C52C8φ: trivial image160(C4xD4).15D5320,637

׿
×
𝔽