Copied to
clipboard

G = D46D20order 320 = 26·5

2nd semidirect product of D4 and D20 acting through Inn(D4)

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D46D20, C42.112D10, C10.612- 1+4, (C4×D4)⋊17D5, (C5×D4)⋊11D4, (D4×C20)⋊19C2, (C4×D20)⋊31C2, C53(D46D4), C4.23(C2×D20), C20.55(C2×D4), C2014(C4○D4), C207D410C2, C45(D42D5), C4⋊C4.284D10, C202Q825C2, C22.2(C2×D20), D102Q815C2, (C2×D4).249D10, (C2×C10).99C24, C2.19(C22×D20), C10.17(C22×D4), (C4×C20).155C22, (C2×C20).160C23, C22⋊C4.113D10, (C22×C4).211D10, C22.D206C2, C4⋊Dic5.39C22, (C2×D20).220C22, D10⋊C4.5C22, (D4×C10).260C22, (C22×C20).81C22, (C22×D5).34C23, C22.124(C23×D5), C23.173(C22×D5), (C22×C10).169C23, (C2×Dic5).216C23, C2.18(D4.10D10), (C2×Dic10).150C22, (C22×Dic5).97C22, (C2×C10).2(C2×D4), (C2×D42D5)⋊4C2, (C2×C4⋊Dic5)⋊25C2, C10.74(C2×C4○D4), (C2×C4×D5).74C22, C2.22(C2×D42D5), (C5×C4⋊C4).329C22, (C2×C4).732(C22×D5), (C2×C5⋊D4).15C22, (C5×C22⋊C4).106C22, SmallGroup(320,1227)

Series: Derived Chief Lower central Upper central

C1C2×C10 — D46D20
C1C5C10C2×C10C22×D5C2×C4×D5C2×D42D5 — D46D20
C5C2×C10 — D46D20
C1C22C4×D4

Generators and relations for D46D20
 G = < a,b,c,d | a4=b2=c20=d2=1, bab=a-1, ac=ca, ad=da, bc=cb, dbd=a2b, dcd=c-1 >

Subgroups: 1030 in 292 conjugacy classes, 115 normal (29 characteristic)
C1, C2, C2, C4, C4, C22, C22, C22, C5, C2×C4, C2×C4, C2×C4, D4, D4, Q8, C23, C23, D5, C10, C10, C42, C22⋊C4, C22⋊C4, C4⋊C4, C4⋊C4, C22×C4, C22×C4, C2×D4, C2×D4, C2×Q8, C4○D4, Dic5, C20, C20, D10, C2×C10, C2×C10, C2×C10, C2×C4⋊C4, C4×D4, C4×D4, C4⋊D4, C22⋊Q8, C22.D4, C4⋊Q8, C2×C4○D4, Dic10, C4×D5, D20, C2×Dic5, C2×Dic5, C5⋊D4, C2×C20, C2×C20, C2×C20, C5×D4, C22×D5, C22×C10, D46D4, C4⋊Dic5, C4⋊Dic5, D10⋊C4, C4×C20, C5×C22⋊C4, C5×C4⋊C4, C2×Dic10, C2×C4×D5, C2×D20, D42D5, C22×Dic5, C2×C5⋊D4, C22×C20, D4×C10, C202Q8, C4×D20, C22.D20, D102Q8, C2×C4⋊Dic5, C207D4, D4×C20, C2×D42D5, D46D20
Quotients: C1, C2, C22, D4, C23, D5, C2×D4, C4○D4, C24, D10, C22×D4, C2×C4○D4, 2- 1+4, D20, C22×D5, D46D4, C2×D20, D42D5, C23×D5, C22×D20, C2×D42D5, D4.10D10, D46D20

Smallest permutation representation of D46D20
On 160 points
Generators in S160
(1 90 120 157)(2 91 101 158)(3 92 102 159)(4 93 103 160)(5 94 104 141)(6 95 105 142)(7 96 106 143)(8 97 107 144)(9 98 108 145)(10 99 109 146)(11 100 110 147)(12 81 111 148)(13 82 112 149)(14 83 113 150)(15 84 114 151)(16 85 115 152)(17 86 116 153)(18 87 117 154)(19 88 118 155)(20 89 119 156)(21 78 44 133)(22 79 45 134)(23 80 46 135)(24 61 47 136)(25 62 48 137)(26 63 49 138)(27 64 50 139)(28 65 51 140)(29 66 52 121)(30 67 53 122)(31 68 54 123)(32 69 55 124)(33 70 56 125)(34 71 57 126)(35 72 58 127)(36 73 59 128)(37 74 60 129)(38 75 41 130)(39 76 42 131)(40 77 43 132)
(1 22)(2 23)(3 24)(4 25)(5 26)(6 27)(7 28)(8 29)(9 30)(10 31)(11 32)(12 33)(13 34)(14 35)(15 36)(16 37)(17 38)(18 39)(19 40)(20 21)(41 116)(42 117)(43 118)(44 119)(45 120)(46 101)(47 102)(48 103)(49 104)(50 105)(51 106)(52 107)(53 108)(54 109)(55 110)(56 111)(57 112)(58 113)(59 114)(60 115)(61 159)(62 160)(63 141)(64 142)(65 143)(66 144)(67 145)(68 146)(69 147)(70 148)(71 149)(72 150)(73 151)(74 152)(75 153)(76 154)(77 155)(78 156)(79 157)(80 158)(81 125)(82 126)(83 127)(84 128)(85 129)(86 130)(87 131)(88 132)(89 133)(90 134)(91 135)(92 136)(93 137)(94 138)(95 139)(96 140)(97 121)(98 122)(99 123)(100 124)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 20)(2 19)(3 18)(4 17)(5 16)(6 15)(7 14)(8 13)(9 12)(10 11)(21 45)(22 44)(23 43)(24 42)(25 41)(26 60)(27 59)(28 58)(29 57)(30 56)(31 55)(32 54)(33 53)(34 52)(35 51)(36 50)(37 49)(38 48)(39 47)(40 46)(61 131)(62 130)(63 129)(64 128)(65 127)(66 126)(67 125)(68 124)(69 123)(70 122)(71 121)(72 140)(73 139)(74 138)(75 137)(76 136)(77 135)(78 134)(79 133)(80 132)(81 98)(82 97)(83 96)(84 95)(85 94)(86 93)(87 92)(88 91)(89 90)(99 100)(101 118)(102 117)(103 116)(104 115)(105 114)(106 113)(107 112)(108 111)(109 110)(119 120)(141 152)(142 151)(143 150)(144 149)(145 148)(146 147)(153 160)(154 159)(155 158)(156 157)

G:=sub<Sym(160)| (1,90,120,157)(2,91,101,158)(3,92,102,159)(4,93,103,160)(5,94,104,141)(6,95,105,142)(7,96,106,143)(8,97,107,144)(9,98,108,145)(10,99,109,146)(11,100,110,147)(12,81,111,148)(13,82,112,149)(14,83,113,150)(15,84,114,151)(16,85,115,152)(17,86,116,153)(18,87,117,154)(19,88,118,155)(20,89,119,156)(21,78,44,133)(22,79,45,134)(23,80,46,135)(24,61,47,136)(25,62,48,137)(26,63,49,138)(27,64,50,139)(28,65,51,140)(29,66,52,121)(30,67,53,122)(31,68,54,123)(32,69,55,124)(33,70,56,125)(34,71,57,126)(35,72,58,127)(36,73,59,128)(37,74,60,129)(38,75,41,130)(39,76,42,131)(40,77,43,132), (1,22)(2,23)(3,24)(4,25)(5,26)(6,27)(7,28)(8,29)(9,30)(10,31)(11,32)(12,33)(13,34)(14,35)(15,36)(16,37)(17,38)(18,39)(19,40)(20,21)(41,116)(42,117)(43,118)(44,119)(45,120)(46,101)(47,102)(48,103)(49,104)(50,105)(51,106)(52,107)(53,108)(54,109)(55,110)(56,111)(57,112)(58,113)(59,114)(60,115)(61,159)(62,160)(63,141)(64,142)(65,143)(66,144)(67,145)(68,146)(69,147)(70,148)(71,149)(72,150)(73,151)(74,152)(75,153)(76,154)(77,155)(78,156)(79,157)(80,158)(81,125)(82,126)(83,127)(84,128)(85,129)(86,130)(87,131)(88,132)(89,133)(90,134)(91,135)(92,136)(93,137)(94,138)(95,139)(96,140)(97,121)(98,122)(99,123)(100,124), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,20)(2,19)(3,18)(4,17)(5,16)(6,15)(7,14)(8,13)(9,12)(10,11)(21,45)(22,44)(23,43)(24,42)(25,41)(26,60)(27,59)(28,58)(29,57)(30,56)(31,55)(32,54)(33,53)(34,52)(35,51)(36,50)(37,49)(38,48)(39,47)(40,46)(61,131)(62,130)(63,129)(64,128)(65,127)(66,126)(67,125)(68,124)(69,123)(70,122)(71,121)(72,140)(73,139)(74,138)(75,137)(76,136)(77,135)(78,134)(79,133)(80,132)(81,98)(82,97)(83,96)(84,95)(85,94)(86,93)(87,92)(88,91)(89,90)(99,100)(101,118)(102,117)(103,116)(104,115)(105,114)(106,113)(107,112)(108,111)(109,110)(119,120)(141,152)(142,151)(143,150)(144,149)(145,148)(146,147)(153,160)(154,159)(155,158)(156,157)>;

G:=Group( (1,90,120,157)(2,91,101,158)(3,92,102,159)(4,93,103,160)(5,94,104,141)(6,95,105,142)(7,96,106,143)(8,97,107,144)(9,98,108,145)(10,99,109,146)(11,100,110,147)(12,81,111,148)(13,82,112,149)(14,83,113,150)(15,84,114,151)(16,85,115,152)(17,86,116,153)(18,87,117,154)(19,88,118,155)(20,89,119,156)(21,78,44,133)(22,79,45,134)(23,80,46,135)(24,61,47,136)(25,62,48,137)(26,63,49,138)(27,64,50,139)(28,65,51,140)(29,66,52,121)(30,67,53,122)(31,68,54,123)(32,69,55,124)(33,70,56,125)(34,71,57,126)(35,72,58,127)(36,73,59,128)(37,74,60,129)(38,75,41,130)(39,76,42,131)(40,77,43,132), (1,22)(2,23)(3,24)(4,25)(5,26)(6,27)(7,28)(8,29)(9,30)(10,31)(11,32)(12,33)(13,34)(14,35)(15,36)(16,37)(17,38)(18,39)(19,40)(20,21)(41,116)(42,117)(43,118)(44,119)(45,120)(46,101)(47,102)(48,103)(49,104)(50,105)(51,106)(52,107)(53,108)(54,109)(55,110)(56,111)(57,112)(58,113)(59,114)(60,115)(61,159)(62,160)(63,141)(64,142)(65,143)(66,144)(67,145)(68,146)(69,147)(70,148)(71,149)(72,150)(73,151)(74,152)(75,153)(76,154)(77,155)(78,156)(79,157)(80,158)(81,125)(82,126)(83,127)(84,128)(85,129)(86,130)(87,131)(88,132)(89,133)(90,134)(91,135)(92,136)(93,137)(94,138)(95,139)(96,140)(97,121)(98,122)(99,123)(100,124), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,20)(2,19)(3,18)(4,17)(5,16)(6,15)(7,14)(8,13)(9,12)(10,11)(21,45)(22,44)(23,43)(24,42)(25,41)(26,60)(27,59)(28,58)(29,57)(30,56)(31,55)(32,54)(33,53)(34,52)(35,51)(36,50)(37,49)(38,48)(39,47)(40,46)(61,131)(62,130)(63,129)(64,128)(65,127)(66,126)(67,125)(68,124)(69,123)(70,122)(71,121)(72,140)(73,139)(74,138)(75,137)(76,136)(77,135)(78,134)(79,133)(80,132)(81,98)(82,97)(83,96)(84,95)(85,94)(86,93)(87,92)(88,91)(89,90)(99,100)(101,118)(102,117)(103,116)(104,115)(105,114)(106,113)(107,112)(108,111)(109,110)(119,120)(141,152)(142,151)(143,150)(144,149)(145,148)(146,147)(153,160)(154,159)(155,158)(156,157) );

G=PermutationGroup([[(1,90,120,157),(2,91,101,158),(3,92,102,159),(4,93,103,160),(5,94,104,141),(6,95,105,142),(7,96,106,143),(8,97,107,144),(9,98,108,145),(10,99,109,146),(11,100,110,147),(12,81,111,148),(13,82,112,149),(14,83,113,150),(15,84,114,151),(16,85,115,152),(17,86,116,153),(18,87,117,154),(19,88,118,155),(20,89,119,156),(21,78,44,133),(22,79,45,134),(23,80,46,135),(24,61,47,136),(25,62,48,137),(26,63,49,138),(27,64,50,139),(28,65,51,140),(29,66,52,121),(30,67,53,122),(31,68,54,123),(32,69,55,124),(33,70,56,125),(34,71,57,126),(35,72,58,127),(36,73,59,128),(37,74,60,129),(38,75,41,130),(39,76,42,131),(40,77,43,132)], [(1,22),(2,23),(3,24),(4,25),(5,26),(6,27),(7,28),(8,29),(9,30),(10,31),(11,32),(12,33),(13,34),(14,35),(15,36),(16,37),(17,38),(18,39),(19,40),(20,21),(41,116),(42,117),(43,118),(44,119),(45,120),(46,101),(47,102),(48,103),(49,104),(50,105),(51,106),(52,107),(53,108),(54,109),(55,110),(56,111),(57,112),(58,113),(59,114),(60,115),(61,159),(62,160),(63,141),(64,142),(65,143),(66,144),(67,145),(68,146),(69,147),(70,148),(71,149),(72,150),(73,151),(74,152),(75,153),(76,154),(77,155),(78,156),(79,157),(80,158),(81,125),(82,126),(83,127),(84,128),(85,129),(86,130),(87,131),(88,132),(89,133),(90,134),(91,135),(92,136),(93,137),(94,138),(95,139),(96,140),(97,121),(98,122),(99,123),(100,124)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,20),(2,19),(3,18),(4,17),(5,16),(6,15),(7,14),(8,13),(9,12),(10,11),(21,45),(22,44),(23,43),(24,42),(25,41),(26,60),(27,59),(28,58),(29,57),(30,56),(31,55),(32,54),(33,53),(34,52),(35,51),(36,50),(37,49),(38,48),(39,47),(40,46),(61,131),(62,130),(63,129),(64,128),(65,127),(66,126),(67,125),(68,124),(69,123),(70,122),(71,121),(72,140),(73,139),(74,138),(75,137),(76,136),(77,135),(78,134),(79,133),(80,132),(81,98),(82,97),(83,96),(84,95),(85,94),(86,93),(87,92),(88,91),(89,90),(99,100),(101,118),(102,117),(103,116),(104,115),(105,114),(106,113),(107,112),(108,111),(109,110),(119,120),(141,152),(142,151),(143,150),(144,149),(145,148),(146,147),(153,160),(154,159),(155,158),(156,157)]])

65 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I4A4B4C4D4E4F4G4H4I4J4K4L4M4N4O5A5B10A···10F10G···10N20A···20H20I···20X
order12222222224444444444444445510···1010···1020···2020···20
size11112222202022224441010101020202020222···24···42···24···4

65 irreducible representations

dim111111111222222222444
type+++++++++++++++++---
imageC1C2C2C2C2C2C2C2C2D4D5C4○D4D10D10D10D10D10D202- 1+4D42D5D4.10D10
kernelD46D20C202Q8C4×D20C22.D20D102Q8C2×C4⋊Dic5C207D4D4×C20C2×D42D5C5×D4C4×D4C20C42C22⋊C4C4⋊C4C22×C4C2×D4D4C10C4C2
# reps1114222124242424216144

Matrix representation of D46D20 in GL4(𝔽41) generated by

1000
0100
00320
0009
,
1000
0100
0009
00320
,
27200
251100
00400
00040
,
30200
221100
00400
0001
G:=sub<GL(4,GF(41))| [1,0,0,0,0,1,0,0,0,0,32,0,0,0,0,9],[1,0,0,0,0,1,0,0,0,0,0,32,0,0,9,0],[27,25,0,0,2,11,0,0,0,0,40,0,0,0,0,40],[30,22,0,0,2,11,0,0,0,0,40,0,0,0,0,1] >;

D46D20 in GAP, Magma, Sage, TeX

D_4\rtimes_6D_{20}
% in TeX

G:=Group("D4:6D20");
// GroupNames label

G:=SmallGroup(320,1227);
// by ID

G=gap.SmallGroup(320,1227);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,232,758,387,675,80,12550]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^2=c^20=d^2=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d=a^2*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽