Extensions 1→N→G→Q→1 with N=C4 and Q=C5×SD16

Direct product G=N×Q with N=C4 and Q=C5×SD16
dρLabelID
SD16×C20160SD16xC20320,939

Semidirect products G=N:Q with N=C4 and Q=C5×SD16
extensionφ:Q→Aut NdρLabelID
C41(C5×SD16) = C5×C85D4φ: C5×SD16/C40C2 ⊆ Aut C4160C4:1(C5xSD16)320,993
C42(C5×SD16) = C5×D4.D4φ: C5×SD16/C5×D4C2 ⊆ Aut C4160C4:2(C5xSD16)320,962
C43(C5×SD16) = C5×C4⋊SD16φ: C5×SD16/C5×Q8C2 ⊆ Aut C4160C4:3(C5xSD16)320,961

Non-split extensions G=N.Q with N=C4 and Q=C5×SD16
extensionφ:Q→Aut NdρLabelID
C4.1(C5×SD16) = C5×C2.D16φ: C5×SD16/C40C2 ⊆ Aut C4160C4.1(C5xSD16)320,162
C4.2(C5×SD16) = C5×C2.Q32φ: C5×SD16/C40C2 ⊆ Aut C4320C4.2(C5xSD16)320,163
C4.3(C5×SD16) = C5×C4.4D8φ: C5×SD16/C40C2 ⊆ Aut C4160C4.3(C5xSD16)320,987
C4.4(C5×SD16) = C5×C4.SD16φ: C5×SD16/C40C2 ⊆ Aut C4320C4.4(C5xSD16)320,988
C4.5(C5×SD16) = C5×C83Q8φ: C5×SD16/C40C2 ⊆ Aut C4320C4.5(C5xSD16)320,999
C4.6(C5×SD16) = C5×C4.10D8φ: C5×SD16/C5×D4C2 ⊆ Aut C4320C4.6(C5xSD16)320,137
C4.7(C5×SD16) = C5×C4.6Q16φ: C5×SD16/C5×D4C2 ⊆ Aut C4320C4.7(C5xSD16)320,138
C4.8(C5×SD16) = C5×D82C4φ: C5×SD16/C5×D4C2 ⊆ Aut C4804C4.8(C5xSD16)320,165
C4.9(C5×SD16) = C5×C8.Q8φ: C5×SD16/C5×D4C2 ⊆ Aut C4804C4.9(C5xSD16)320,170
C4.10(C5×SD16) = C5×D42Q8φ: C5×SD16/C5×D4C2 ⊆ Aut C4160C4.10(C5xSD16)320,977
C4.11(C5×SD16) = C5×C4.D8φ: C5×SD16/C5×Q8C2 ⊆ Aut C4160C4.11(C5xSD16)320,136
C4.12(C5×SD16) = C5×Q8⋊Q8φ: C5×SD16/C5×Q8C2 ⊆ Aut C4320C4.12(C5xSD16)320,976
C4.13(C5×SD16) = C5×D4⋊C8central extension (φ=1)160C4.13(C5xSD16)320,130
C4.14(C5×SD16) = C5×Q8⋊C8central extension (φ=1)320C4.14(C5xSD16)320,131
C4.15(C5×SD16) = C5×C82C8central extension (φ=1)320C4.15(C5xSD16)320,139

׿
×
𝔽