direct product, metacyclic, nilpotent (class 3), monomial, 2-elementary
Aliases: C5×SD16, Q8⋊C10, C40⋊6C2, C8⋊2C10, D4.C10, C10.15D4, C20.18C22, (C5×Q8)⋊4C2, C2.4(C5×D4), C4.2(C2×C10), (C5×D4).2C2, SmallGroup(80,26)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C5×SD16
G = < a,b,c | a5=b8=c2=1, ab=ba, ac=ca, cbc=b3 >
(1 18 29 35 10)(2 19 30 36 11)(3 20 31 37 12)(4 21 32 38 13)(5 22 25 39 14)(6 23 26 40 15)(7 24 27 33 16)(8 17 28 34 9)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)
(2 4)(3 7)(6 8)(9 15)(11 13)(12 16)(17 23)(19 21)(20 24)(26 28)(27 31)(30 32)(33 37)(34 40)(36 38)
G:=sub<Sym(40)| (1,18,29,35,10)(2,19,30,36,11)(3,20,31,37,12)(4,21,32,38,13)(5,22,25,39,14)(6,23,26,40,15)(7,24,27,33,16)(8,17,28,34,9), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40), (2,4)(3,7)(6,8)(9,15)(11,13)(12,16)(17,23)(19,21)(20,24)(26,28)(27,31)(30,32)(33,37)(34,40)(36,38)>;
G:=Group( (1,18,29,35,10)(2,19,30,36,11)(3,20,31,37,12)(4,21,32,38,13)(5,22,25,39,14)(6,23,26,40,15)(7,24,27,33,16)(8,17,28,34,9), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40), (2,4)(3,7)(6,8)(9,15)(11,13)(12,16)(17,23)(19,21)(20,24)(26,28)(27,31)(30,32)(33,37)(34,40)(36,38) );
G=PermutationGroup([[(1,18,29,35,10),(2,19,30,36,11),(3,20,31,37,12),(4,21,32,38,13),(5,22,25,39,14),(6,23,26,40,15),(7,24,27,33,16),(8,17,28,34,9)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40)], [(2,4),(3,7),(6,8),(9,15),(11,13),(12,16),(17,23),(19,21),(20,24),(26,28),(27,31),(30,32),(33,37),(34,40),(36,38)]])
C5×SD16 is a maximal subgroup of
D40⋊C2 SD16⋊D5 SD16⋊3D5
35 conjugacy classes
class | 1 | 2A | 2B | 4A | 4B | 5A | 5B | 5C | 5D | 8A | 8B | 10A | 10B | 10C | 10D | 10E | 10F | 10G | 10H | 20A | 20B | 20C | 20D | 20E | 20F | 20G | 20H | 40A | ··· | 40H |
order | 1 | 2 | 2 | 4 | 4 | 5 | 5 | 5 | 5 | 8 | 8 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 40 | ··· | 40 |
size | 1 | 1 | 4 | 2 | 4 | 1 | 1 | 1 | 1 | 2 | 2 | 1 | 1 | 1 | 1 | 4 | 4 | 4 | 4 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 2 | ··· | 2 |
35 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 |
type | + | + | + | + | + | |||||||
image | C1 | C2 | C2 | C2 | C5 | C10 | C10 | C10 | D4 | SD16 | C5×D4 | C5×SD16 |
kernel | C5×SD16 | C40 | C5×D4 | C5×Q8 | SD16 | C8 | D4 | Q8 | C10 | C5 | C2 | C1 |
# reps | 1 | 1 | 1 | 1 | 4 | 4 | 4 | 4 | 1 | 2 | 4 | 8 |
Matrix representation of C5×SD16 ►in GL2(𝔽11) generated by
4 | 0 |
0 | 4 |
8 | 5 |
9 | 0 |
10 | 7 |
0 | 1 |
G:=sub<GL(2,GF(11))| [4,0,0,4],[8,9,5,0],[10,0,7,1] >;
C5×SD16 in GAP, Magma, Sage, TeX
C_5\times {\rm SD}_{16}
% in TeX
G:=Group("C5xSD16");
// GroupNames label
G:=SmallGroup(80,26);
// by ID
G=gap.SmallGroup(80,26);
# by ID
G:=PCGroup([5,-2,-2,-5,-2,-2,200,221,1203,608,58]);
// Polycyclic
G:=Group<a,b,c|a^5=b^8=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^3>;
// generators/relations
Export