Copied to
clipboard

G = C5×D4⋊C8order 320 = 26·5

Direct product of C5 and D4⋊C8

direct product, metabelian, nilpotent (class 3), monomial, 2-elementary

Aliases: C5×D4⋊C8, D4⋊C40, C20.67D8, C20.54SD16, C20.42M4(2), C4⋊C81C10, (C4×C8)⋊1C10, (C4×C40)⋊2C2, (C5×D4)⋊5C8, C4⋊C4.3C20, C4.1(C2×C40), C4.16(C5×D8), C10.32C4≀C2, C20.64(C2×C8), (C2×D4).4C20, (C4×D4).1C10, (D4×C10).27C4, (D4×C20).16C2, (C2×C20).528D4, C4.13(C5×SD16), C4.1(C5×M4(2)), C42.62(C2×C10), C10.37(C22⋊C8), (C4×C20).346C22, C10.47(D4⋊C4), (C5×C4⋊C8)⋊3C2, C2.1(C5×C4≀C2), (C5×C4⋊C4).28C4, (C2×C4).93(C5×D4), C2.5(C5×C22⋊C8), (C2×C4).38(C2×C20), C2.1(C5×D4⋊C4), (C2×C20).431(C2×C4), C22.25(C5×C22⋊C4), (C2×C10).184(C22⋊C4), SmallGroup(320,130)

Series: Derived Chief Lower central Upper central

C1C4 — C5×D4⋊C8
C1C2C22C2×C4C42C4×C20C5×C4⋊C8 — C5×D4⋊C8
C1C2C4 — C5×D4⋊C8
C1C2×C20C4×C20 — C5×D4⋊C8

Generators and relations for C5×D4⋊C8
 G = < a,b,c,d | a5=b4=c2=d8=1, ab=ba, ac=ca, ad=da, cbc=dbd-1=b-1, dcd-1=bc >

Subgroups: 154 in 82 conjugacy classes, 42 normal (38 characteristic)
C1, C2, C2, C4, C4, C22, C22, C5, C8, C2×C4, C2×C4, D4, D4, C23, C10, C10, C42, C22⋊C4, C4⋊C4, C2×C8, C22×C4, C2×D4, C20, C20, C2×C10, C2×C10, C4×C8, C4⋊C8, C4×D4, C40, C2×C20, C2×C20, C5×D4, C5×D4, C22×C10, D4⋊C8, C4×C20, C5×C22⋊C4, C5×C4⋊C4, C2×C40, C22×C20, D4×C10, C4×C40, C5×C4⋊C8, D4×C20, C5×D4⋊C8
Quotients: C1, C2, C4, C22, C5, C8, C2×C4, D4, C10, C22⋊C4, C2×C8, M4(2), D8, SD16, C20, C2×C10, C22⋊C8, D4⋊C4, C4≀C2, C40, C2×C20, C5×D4, D4⋊C8, C5×C22⋊C4, C2×C40, C5×M4(2), C5×D8, C5×SD16, C5×C22⋊C8, C5×D4⋊C4, C5×C4≀C2, C5×D4⋊C8

Smallest permutation representation of C5×D4⋊C8
On 160 points
Generators in S160
(1 11 47 39 31)(2 12 48 40 32)(3 13 41 33 25)(4 14 42 34 26)(5 15 43 35 27)(6 16 44 36 28)(7 9 45 37 29)(8 10 46 38 30)(17 113 105 97 96)(18 114 106 98 89)(19 115 107 99 90)(20 116 108 100 91)(21 117 109 101 92)(22 118 110 102 93)(23 119 111 103 94)(24 120 112 104 95)(49 87 73 65 57)(50 88 74 66 58)(51 81 75 67 59)(52 82 76 68 60)(53 83 77 69 61)(54 84 78 70 62)(55 85 79 71 63)(56 86 80 72 64)(121 153 145 137 129)(122 154 146 138 130)(123 155 147 139 131)(124 156 148 140 132)(125 157 149 141 133)(126 158 150 142 134)(127 159 151 143 135)(128 160 152 144 136)
(1 55 127 103)(2 104 128 56)(3 49 121 97)(4 98 122 50)(5 51 123 99)(6 100 124 52)(7 53 125 101)(8 102 126 54)(9 83 157 92)(10 93 158 84)(11 85 159 94)(12 95 160 86)(13 87 153 96)(14 89 154 88)(15 81 155 90)(16 91 156 82)(17 41 73 145)(18 146 74 42)(19 43 75 147)(20 148 76 44)(21 45 77 149)(22 150 78 46)(23 47 79 151)(24 152 80 48)(25 57 129 105)(26 106 130 58)(27 59 131 107)(28 108 132 60)(29 61 133 109)(30 110 134 62)(31 63 135 111)(32 112 136 64)(33 65 137 113)(34 114 138 66)(35 67 139 115)(36 116 140 68)(37 69 141 117)(38 118 142 70)(39 71 143 119)(40 120 144 72)
(1 103)(2 128)(3 97)(4 122)(5 99)(6 124)(7 101)(8 126)(9 92)(10 158)(11 94)(12 160)(13 96)(14 154)(15 90)(16 156)(17 41)(19 43)(21 45)(23 47)(25 105)(26 130)(27 107)(28 132)(29 109)(30 134)(31 111)(32 136)(33 113)(34 138)(35 115)(36 140)(37 117)(38 142)(39 119)(40 144)(42 146)(44 148)(46 150)(48 152)(49 121)(51 123)(53 125)(55 127)(57 129)(59 131)(61 133)(63 135)(65 137)(67 139)(69 141)(71 143)(73 145)(75 147)(77 149)(79 151)(81 155)(83 157)(85 159)(87 153)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128)(129 130 131 132 133 134 135 136)(137 138 139 140 141 142 143 144)(145 146 147 148 149 150 151 152)(153 154 155 156 157 158 159 160)

G:=sub<Sym(160)| (1,11,47,39,31)(2,12,48,40,32)(3,13,41,33,25)(4,14,42,34,26)(5,15,43,35,27)(6,16,44,36,28)(7,9,45,37,29)(8,10,46,38,30)(17,113,105,97,96)(18,114,106,98,89)(19,115,107,99,90)(20,116,108,100,91)(21,117,109,101,92)(22,118,110,102,93)(23,119,111,103,94)(24,120,112,104,95)(49,87,73,65,57)(50,88,74,66,58)(51,81,75,67,59)(52,82,76,68,60)(53,83,77,69,61)(54,84,78,70,62)(55,85,79,71,63)(56,86,80,72,64)(121,153,145,137,129)(122,154,146,138,130)(123,155,147,139,131)(124,156,148,140,132)(125,157,149,141,133)(126,158,150,142,134)(127,159,151,143,135)(128,160,152,144,136), (1,55,127,103)(2,104,128,56)(3,49,121,97)(4,98,122,50)(5,51,123,99)(6,100,124,52)(7,53,125,101)(8,102,126,54)(9,83,157,92)(10,93,158,84)(11,85,159,94)(12,95,160,86)(13,87,153,96)(14,89,154,88)(15,81,155,90)(16,91,156,82)(17,41,73,145)(18,146,74,42)(19,43,75,147)(20,148,76,44)(21,45,77,149)(22,150,78,46)(23,47,79,151)(24,152,80,48)(25,57,129,105)(26,106,130,58)(27,59,131,107)(28,108,132,60)(29,61,133,109)(30,110,134,62)(31,63,135,111)(32,112,136,64)(33,65,137,113)(34,114,138,66)(35,67,139,115)(36,116,140,68)(37,69,141,117)(38,118,142,70)(39,71,143,119)(40,120,144,72), (1,103)(2,128)(3,97)(4,122)(5,99)(6,124)(7,101)(8,126)(9,92)(10,158)(11,94)(12,160)(13,96)(14,154)(15,90)(16,156)(17,41)(19,43)(21,45)(23,47)(25,105)(26,130)(27,107)(28,132)(29,109)(30,134)(31,111)(32,136)(33,113)(34,138)(35,115)(36,140)(37,117)(38,142)(39,119)(40,144)(42,146)(44,148)(46,150)(48,152)(49,121)(51,123)(53,125)(55,127)(57,129)(59,131)(61,133)(63,135)(65,137)(67,139)(69,141)(71,143)(73,145)(75,147)(77,149)(79,151)(81,155)(83,157)(85,159)(87,153), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152)(153,154,155,156,157,158,159,160)>;

G:=Group( (1,11,47,39,31)(2,12,48,40,32)(3,13,41,33,25)(4,14,42,34,26)(5,15,43,35,27)(6,16,44,36,28)(7,9,45,37,29)(8,10,46,38,30)(17,113,105,97,96)(18,114,106,98,89)(19,115,107,99,90)(20,116,108,100,91)(21,117,109,101,92)(22,118,110,102,93)(23,119,111,103,94)(24,120,112,104,95)(49,87,73,65,57)(50,88,74,66,58)(51,81,75,67,59)(52,82,76,68,60)(53,83,77,69,61)(54,84,78,70,62)(55,85,79,71,63)(56,86,80,72,64)(121,153,145,137,129)(122,154,146,138,130)(123,155,147,139,131)(124,156,148,140,132)(125,157,149,141,133)(126,158,150,142,134)(127,159,151,143,135)(128,160,152,144,136), (1,55,127,103)(2,104,128,56)(3,49,121,97)(4,98,122,50)(5,51,123,99)(6,100,124,52)(7,53,125,101)(8,102,126,54)(9,83,157,92)(10,93,158,84)(11,85,159,94)(12,95,160,86)(13,87,153,96)(14,89,154,88)(15,81,155,90)(16,91,156,82)(17,41,73,145)(18,146,74,42)(19,43,75,147)(20,148,76,44)(21,45,77,149)(22,150,78,46)(23,47,79,151)(24,152,80,48)(25,57,129,105)(26,106,130,58)(27,59,131,107)(28,108,132,60)(29,61,133,109)(30,110,134,62)(31,63,135,111)(32,112,136,64)(33,65,137,113)(34,114,138,66)(35,67,139,115)(36,116,140,68)(37,69,141,117)(38,118,142,70)(39,71,143,119)(40,120,144,72), (1,103)(2,128)(3,97)(4,122)(5,99)(6,124)(7,101)(8,126)(9,92)(10,158)(11,94)(12,160)(13,96)(14,154)(15,90)(16,156)(17,41)(19,43)(21,45)(23,47)(25,105)(26,130)(27,107)(28,132)(29,109)(30,134)(31,111)(32,136)(33,113)(34,138)(35,115)(36,140)(37,117)(38,142)(39,119)(40,144)(42,146)(44,148)(46,150)(48,152)(49,121)(51,123)(53,125)(55,127)(57,129)(59,131)(61,133)(63,135)(65,137)(67,139)(69,141)(71,143)(73,145)(75,147)(77,149)(79,151)(81,155)(83,157)(85,159)(87,153), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152)(153,154,155,156,157,158,159,160) );

G=PermutationGroup([[(1,11,47,39,31),(2,12,48,40,32),(3,13,41,33,25),(4,14,42,34,26),(5,15,43,35,27),(6,16,44,36,28),(7,9,45,37,29),(8,10,46,38,30),(17,113,105,97,96),(18,114,106,98,89),(19,115,107,99,90),(20,116,108,100,91),(21,117,109,101,92),(22,118,110,102,93),(23,119,111,103,94),(24,120,112,104,95),(49,87,73,65,57),(50,88,74,66,58),(51,81,75,67,59),(52,82,76,68,60),(53,83,77,69,61),(54,84,78,70,62),(55,85,79,71,63),(56,86,80,72,64),(121,153,145,137,129),(122,154,146,138,130),(123,155,147,139,131),(124,156,148,140,132),(125,157,149,141,133),(126,158,150,142,134),(127,159,151,143,135),(128,160,152,144,136)], [(1,55,127,103),(2,104,128,56),(3,49,121,97),(4,98,122,50),(5,51,123,99),(6,100,124,52),(7,53,125,101),(8,102,126,54),(9,83,157,92),(10,93,158,84),(11,85,159,94),(12,95,160,86),(13,87,153,96),(14,89,154,88),(15,81,155,90),(16,91,156,82),(17,41,73,145),(18,146,74,42),(19,43,75,147),(20,148,76,44),(21,45,77,149),(22,150,78,46),(23,47,79,151),(24,152,80,48),(25,57,129,105),(26,106,130,58),(27,59,131,107),(28,108,132,60),(29,61,133,109),(30,110,134,62),(31,63,135,111),(32,112,136,64),(33,65,137,113),(34,114,138,66),(35,67,139,115),(36,116,140,68),(37,69,141,117),(38,118,142,70),(39,71,143,119),(40,120,144,72)], [(1,103),(2,128),(3,97),(4,122),(5,99),(6,124),(7,101),(8,126),(9,92),(10,158),(11,94),(12,160),(13,96),(14,154),(15,90),(16,156),(17,41),(19,43),(21,45),(23,47),(25,105),(26,130),(27,107),(28,132),(29,109),(30,134),(31,111),(32,136),(33,113),(34,138),(35,115),(36,140),(37,117),(38,142),(39,119),(40,144),(42,146),(44,148),(46,150),(48,152),(49,121),(51,123),(53,125),(55,127),(57,129),(59,131),(61,133),(63,135),(65,137),(67,139),(69,141),(71,143),(73,145),(75,147),(77,149),(79,151),(81,155),(83,157),(85,159),(87,153)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128),(129,130,131,132,133,134,135,136),(137,138,139,140,141,142,143,144),(145,146,147,148,149,150,151,152),(153,154,155,156,157,158,159,160)]])

140 conjugacy classes

class 1 2A2B2C2D2E4A4B4C4D4E4F4G4H4I4J5A5B5C5D8A···8H8I8J8K8L10A···10L10M···10T20A···20P20Q···20AF20AG···20AN40A···40AF40AG···40AV
order122222444444444455558···8888810···1010···1020···2020···2020···2040···4040···40
size111144111122224411112···244441···14···41···12···24···42···24···4

140 irreducible representations

dim111111111111112222222222
type++++++
imageC1C2C2C2C4C4C5C8C10C10C10C20C20C40D4M4(2)D8SD16C4≀C2C5×D4C5×M4(2)C5×D8C5×SD16C5×C4≀C2
kernelC5×D4⋊C8C4×C40C5×C4⋊C8D4×C20C5×C4⋊C4D4×C10D4⋊C8C5×D4C4×C8C4⋊C8C4×D4C4⋊C4C2×D4D4C2×C20C20C20C20C10C2×C4C4C4C4C2
# reps11112248444883222224888816

Matrix representation of C5×D4⋊C8 in GL3(𝔽41) generated by

100
0100
0010
,
100
0139
0140
,
4000
0139
0040
,
2700
008
040
G:=sub<GL(3,GF(41))| [1,0,0,0,10,0,0,0,10],[1,0,0,0,1,1,0,39,40],[40,0,0,0,1,0,0,39,40],[27,0,0,0,0,4,0,8,0] >;

C5×D4⋊C8 in GAP, Magma, Sage, TeX

C_5\times D_4\rtimes C_8
% in TeX

G:=Group("C5xD4:C8");
// GroupNames label

G:=SmallGroup(320,130);
// by ID

G=gap.SmallGroup(320,130);
# by ID

G:=PCGroup([7,-2,-2,-5,-2,-2,-2,-2,280,309,2803,1410,136,172]);
// Polycyclic

G:=Group<a,b,c,d|a^5=b^4=c^2=d^8=1,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c=d*b*d^-1=b^-1,d*c*d^-1=b*c>;
// generators/relations

׿
×
𝔽