Extensions 1→N→G→Q→1 with N=C2 and Q=D20.2C4

Direct product G=N×Q with N=C2 and Q=D20.2C4
dρLabelID
C2×D20.2C4160C2xD20.2C4320,1416


Non-split extensions G=N.Q with N=C2 and Q=D20.2C4
extensionφ:Q→Aut NdρLabelID
C2.1(D20.2C4) = D10.7C42central extension (φ=1)160C2.1(D20.2C4)320,335
C2.2(D20.2C4) = C55(C8×D4)central extension (φ=1)160C2.2(D20.2C4)320,352
C2.3(D20.2C4) = Dic105C8central extension (φ=1)320C2.3(D20.2C4)320,457
C2.4(D20.2C4) = D205C8central extension (φ=1)160C2.4(D20.2C4)320,461
C2.5(D20.2C4) = C20.37C42central extension (φ=1)160C2.5(D20.2C4)320,749
C2.6(D20.2C4) = C40⋊Q8central stem extension (φ=1)320C2.6(D20.2C4)320,328
C2.7(D20.2C4) = C89D20central stem extension (φ=1)160C2.7(D20.2C4)320,333
C2.8(D20.2C4) = C42.185D10central stem extension (φ=1)160C2.8(D20.2C4)320,336
C2.9(D20.2C4) = C408C4⋊C2central stem extension (φ=1)160C2.9(D20.2C4)320,347
C2.10(D20.2C4) = C22⋊C8⋊D5central stem extension (φ=1)160C2.10(D20.2C4)320,354
C2.11(D20.2C4) = C52C826D4central stem extension (φ=1)160C2.11(D20.2C4)320,357
C2.12(D20.2C4) = C42.198D10central stem extension (φ=1)320C2.12(D20.2C4)320,458
C2.13(D20.2C4) = C206M4(2)central stem extension (φ=1)160C2.13(D20.2C4)320,465
C2.14(D20.2C4) = C42.30D10central stem extension (φ=1)160C2.14(D20.2C4)320,466
C2.15(D20.2C4) = C42.31D10central stem extension (φ=1)160C2.15(D20.2C4)320,467
C2.16(D20.2C4) = C20.51(C4⋊C4)central stem extension (φ=1)160C2.16(D20.2C4)320,746
C2.17(D20.2C4) = C40⋊D4central stem extension (φ=1)160C2.17(D20.2C4)320,754
C2.18(D20.2C4) = C4018D4central stem extension (φ=1)160C2.18(D20.2C4)320,755
C2.19(D20.2C4) = C4.89(C2×D20)central stem extension (φ=1)160C2.19(D20.2C4)320,756

׿
×
𝔽