Copied to
clipboard

G = C40⋊D4order 320 = 26·5

17th semidirect product of C40 and D4 acting via D4/C2=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C4017D4, D106M4(2), C812(C5⋊D4), C511(C89D4), C408C428C2, (C2×C8).188D10, C10.109(C4×D4), C20.442(C2×D4), (C2×M4(2))⋊7D5, D101C838C2, C23.19(C4×D5), C10.56(C8○D4), (C10×M4(2))⋊6C2, C20.8Q840C2, C2.21(D5×M4(2)), C23.D5.19C4, D10⋊C4.26C4, C20.253(C4○D4), C4.137(C4○D20), C20.55D429C2, (C2×C40).234C22, (C2×C20).867C23, C10.D4.26C4, (C22×C4).136D10, C10.66(C2×M4(2)), C2.17(D20.2C4), (C22×C20).374C22, (C4×Dic5).209C22, (D5×C2×C8)⋊27C2, (C2×C4).50(C4×D5), C2.24(C4×C5⋊D4), (C4×C5⋊D4).16C2, (C2×C5⋊D4).19C4, C4.133(C2×C5⋊D4), C22.146(C2×C4×D5), (C2×C20).360(C2×C4), (C2×C4×D5).355C22, (C2×Dic5).36(C2×C4), (C22×D5).81(C2×C4), (C2×C4).809(C22×D5), (C22×C10).135(C2×C4), (C2×C10).238(C22×C4), (C2×C52C8).331C22, SmallGroup(320,754)

Series: Derived Chief Lower central Upper central

C1C2×C10 — C40⋊D4
C1C5C10C20C2×C20C2×C4×D5C4×C5⋊D4 — C40⋊D4
C5C2×C10 — C40⋊D4
C1C2×C4C2×M4(2)

Generators and relations for C40⋊D4
 G = < a,b,c | a40=b4=c2=1, bab-1=a29, cac=a9, cbc=b-1 >

Subgroups: 382 in 124 conjugacy classes, 53 normal (47 characteristic)
C1, C2, C2, C4, C4, C22, C22, C5, C8, C8, C2×C4, C2×C4, D4, C23, C23, D5, C10, C10, C42, C22⋊C4, C4⋊C4, C2×C8, C2×C8, M4(2), C22×C4, C22×C4, C2×D4, Dic5, C20, C20, D10, D10, C2×C10, C2×C10, C8⋊C4, C22⋊C8, C4⋊C8, C4×D4, C22×C8, C2×M4(2), C52C8, C40, C40, C4×D5, C2×Dic5, C5⋊D4, C2×C20, C2×C20, C22×D5, C22×C10, C89D4, C8×D5, C2×C52C8, C4×Dic5, C10.D4, D10⋊C4, C23.D5, C2×C40, C5×M4(2), C2×C4×D5, C2×C5⋊D4, C22×C20, C20.8Q8, C408C4, D101C8, C20.55D4, D5×C2×C8, C4×C5⋊D4, C10×M4(2), C40⋊D4
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, D5, M4(2), C22×C4, C2×D4, C4○D4, D10, C4×D4, C2×M4(2), C8○D4, C4×D5, C5⋊D4, C22×D5, C89D4, C2×C4×D5, C4○D20, C2×C5⋊D4, D5×M4(2), D20.2C4, C4×C5⋊D4, C40⋊D4

Smallest permutation representation of C40⋊D4
On 160 points
Generators in S160
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 105 44 139)(2 94 45 128)(3 83 46 157)(4 112 47 146)(5 101 48 135)(6 90 49 124)(7 119 50 153)(8 108 51 142)(9 97 52 131)(10 86 53 160)(11 115 54 149)(12 104 55 138)(13 93 56 127)(14 82 57 156)(15 111 58 145)(16 100 59 134)(17 89 60 123)(18 118 61 152)(19 107 62 141)(20 96 63 130)(21 85 64 159)(22 114 65 148)(23 103 66 137)(24 92 67 126)(25 81 68 155)(26 110 69 144)(27 99 70 133)(28 88 71 122)(29 117 72 151)(30 106 73 140)(31 95 74 129)(32 84 75 158)(33 113 76 147)(34 102 77 136)(35 91 78 125)(36 120 79 154)(37 109 80 143)(38 98 41 132)(39 87 42 121)(40 116 43 150)
(2 10)(3 19)(4 28)(5 37)(7 15)(8 24)(9 33)(12 20)(13 29)(14 38)(17 25)(18 34)(22 30)(23 39)(27 35)(32 40)(41 57)(42 66)(43 75)(45 53)(46 62)(47 71)(48 80)(50 58)(51 67)(52 76)(55 63)(56 72)(60 68)(61 77)(65 73)(70 78)(81 123)(82 132)(83 141)(84 150)(85 159)(86 128)(87 137)(88 146)(89 155)(90 124)(91 133)(92 142)(93 151)(94 160)(95 129)(96 138)(97 147)(98 156)(99 125)(100 134)(101 143)(102 152)(103 121)(104 130)(105 139)(106 148)(107 157)(108 126)(109 135)(110 144)(111 153)(112 122)(113 131)(114 140)(115 149)(116 158)(117 127)(118 136)(119 145)(120 154)

G:=sub<Sym(160)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,105,44,139)(2,94,45,128)(3,83,46,157)(4,112,47,146)(5,101,48,135)(6,90,49,124)(7,119,50,153)(8,108,51,142)(9,97,52,131)(10,86,53,160)(11,115,54,149)(12,104,55,138)(13,93,56,127)(14,82,57,156)(15,111,58,145)(16,100,59,134)(17,89,60,123)(18,118,61,152)(19,107,62,141)(20,96,63,130)(21,85,64,159)(22,114,65,148)(23,103,66,137)(24,92,67,126)(25,81,68,155)(26,110,69,144)(27,99,70,133)(28,88,71,122)(29,117,72,151)(30,106,73,140)(31,95,74,129)(32,84,75,158)(33,113,76,147)(34,102,77,136)(35,91,78,125)(36,120,79,154)(37,109,80,143)(38,98,41,132)(39,87,42,121)(40,116,43,150), (2,10)(3,19)(4,28)(5,37)(7,15)(8,24)(9,33)(12,20)(13,29)(14,38)(17,25)(18,34)(22,30)(23,39)(27,35)(32,40)(41,57)(42,66)(43,75)(45,53)(46,62)(47,71)(48,80)(50,58)(51,67)(52,76)(55,63)(56,72)(60,68)(61,77)(65,73)(70,78)(81,123)(82,132)(83,141)(84,150)(85,159)(86,128)(87,137)(88,146)(89,155)(90,124)(91,133)(92,142)(93,151)(94,160)(95,129)(96,138)(97,147)(98,156)(99,125)(100,134)(101,143)(102,152)(103,121)(104,130)(105,139)(106,148)(107,157)(108,126)(109,135)(110,144)(111,153)(112,122)(113,131)(114,140)(115,149)(116,158)(117,127)(118,136)(119,145)(120,154)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,105,44,139)(2,94,45,128)(3,83,46,157)(4,112,47,146)(5,101,48,135)(6,90,49,124)(7,119,50,153)(8,108,51,142)(9,97,52,131)(10,86,53,160)(11,115,54,149)(12,104,55,138)(13,93,56,127)(14,82,57,156)(15,111,58,145)(16,100,59,134)(17,89,60,123)(18,118,61,152)(19,107,62,141)(20,96,63,130)(21,85,64,159)(22,114,65,148)(23,103,66,137)(24,92,67,126)(25,81,68,155)(26,110,69,144)(27,99,70,133)(28,88,71,122)(29,117,72,151)(30,106,73,140)(31,95,74,129)(32,84,75,158)(33,113,76,147)(34,102,77,136)(35,91,78,125)(36,120,79,154)(37,109,80,143)(38,98,41,132)(39,87,42,121)(40,116,43,150), (2,10)(3,19)(4,28)(5,37)(7,15)(8,24)(9,33)(12,20)(13,29)(14,38)(17,25)(18,34)(22,30)(23,39)(27,35)(32,40)(41,57)(42,66)(43,75)(45,53)(46,62)(47,71)(48,80)(50,58)(51,67)(52,76)(55,63)(56,72)(60,68)(61,77)(65,73)(70,78)(81,123)(82,132)(83,141)(84,150)(85,159)(86,128)(87,137)(88,146)(89,155)(90,124)(91,133)(92,142)(93,151)(94,160)(95,129)(96,138)(97,147)(98,156)(99,125)(100,134)(101,143)(102,152)(103,121)(104,130)(105,139)(106,148)(107,157)(108,126)(109,135)(110,144)(111,153)(112,122)(113,131)(114,140)(115,149)(116,158)(117,127)(118,136)(119,145)(120,154) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,105,44,139),(2,94,45,128),(3,83,46,157),(4,112,47,146),(5,101,48,135),(6,90,49,124),(7,119,50,153),(8,108,51,142),(9,97,52,131),(10,86,53,160),(11,115,54,149),(12,104,55,138),(13,93,56,127),(14,82,57,156),(15,111,58,145),(16,100,59,134),(17,89,60,123),(18,118,61,152),(19,107,62,141),(20,96,63,130),(21,85,64,159),(22,114,65,148),(23,103,66,137),(24,92,67,126),(25,81,68,155),(26,110,69,144),(27,99,70,133),(28,88,71,122),(29,117,72,151),(30,106,73,140),(31,95,74,129),(32,84,75,158),(33,113,76,147),(34,102,77,136),(35,91,78,125),(36,120,79,154),(37,109,80,143),(38,98,41,132),(39,87,42,121),(40,116,43,150)], [(2,10),(3,19),(4,28),(5,37),(7,15),(8,24),(9,33),(12,20),(13,29),(14,38),(17,25),(18,34),(22,30),(23,39),(27,35),(32,40),(41,57),(42,66),(43,75),(45,53),(46,62),(47,71),(48,80),(50,58),(51,67),(52,76),(55,63),(56,72),(60,68),(61,77),(65,73),(70,78),(81,123),(82,132),(83,141),(84,150),(85,159),(86,128),(87,137),(88,146),(89,155),(90,124),(91,133),(92,142),(93,151),(94,160),(95,129),(96,138),(97,147),(98,156),(99,125),(100,134),(101,143),(102,152),(103,121),(104,130),(105,139),(106,148),(107,157),(108,126),(109,135),(110,144),(111,153),(112,122),(113,131),(114,140),(115,149),(116,158),(117,127),(118,136),(119,145),(120,154)]])

68 conjugacy classes

class 1 2A2B2C2D2E2F4A4B4C4D4E4F4G4H4I5A5B8A8B8C8D8E8F8G8H8I8J8K8L10A···10F10G10H10I10J20A···20H20I20J20K20L40A···40P
order12222224444444445588888888888810···101010101020···202020202040···40
size1111410101111410102020222222441010101020202···244442···244444···4

68 irreducible representations

dim1111111111112222222222244
type++++++++++++
imageC1C2C2C2C2C2C2C2C4C4C4C4D4D5C4○D4M4(2)D10D10C8○D4C5⋊D4C4×D5C4×D5C4○D20D5×M4(2)D20.2C4
kernelC40⋊D4C20.8Q8C408C4D101C8C20.55D4D5×C2×C8C4×C5⋊D4C10×M4(2)C10.D4D10⋊C4C23.D5C2×C5⋊D4C40C2×M4(2)C20D10C2×C8C22×C4C10C8C2×C4C23C4C2C2
# reps1111111122222224424844844

Matrix representation of C40⋊D4 in GL4(𝔽41) generated by

03400
6600
00118
003530
,
20300
32100
001121
00630
,
6700
363500
0010
0001
G:=sub<GL(4,GF(41))| [0,6,0,0,34,6,0,0,0,0,11,35,0,0,8,30],[20,3,0,0,3,21,0,0,0,0,11,6,0,0,21,30],[6,36,0,0,7,35,0,0,0,0,1,0,0,0,0,1] >;

C40⋊D4 in GAP, Magma, Sage, TeX

C_{40}\rtimes D_4
% in TeX

G:=Group("C40:D4");
// GroupNames label

G:=SmallGroup(320,754);
// by ID

G=gap.SmallGroup(320,754);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,253,387,58,136,12550]);
// Polycyclic

G:=Group<a,b,c|a^40=b^4=c^2=1,b*a*b^-1=a^29,c*a*c=a^9,c*b*c=b^-1>;
// generators/relations

׿
×
𝔽