Extensions 1→N→G→Q→1 with N=C3xC6 and Q=C3xS3

Direct product G=NxQ with N=C3xC6 and Q=C3xS3
dρLabelID
S3xC32xC6108S3xC3^2xC6324,172

Semidirect products G=N:Q with N=C3xC6 and Q=C3xS3
extensionφ:Q→Aut NdρLabelID
(C3xC6):1(C3xS3) = C6xC32:C6φ: C3xS3/C3S3 ⊆ Aut C3xC6366(C3xC6):1(C3xS3)324,138
(C3xC6):2(C3xS3) = C6xHe3:C2φ: C3xS3/C3S3 ⊆ Aut C3xC654(C3xC6):2(C3xS3)324,145
(C3xC6):3(C3xS3) = C2xHe3:4S3φ: C3xS3/C3C6 ⊆ Aut C3xC654(C3xC6):3(C3xS3)324,144
(C3xC6):4(C3xS3) = C2xS3xHe3φ: C3xS3/S3C3 ⊆ Aut C3xC6366(C3xC6):4(C3xS3)324,139
(C3xC6):5(C3xS3) = C3:S3xC3xC6φ: C3xS3/C32C2 ⊆ Aut C3xC636(C3xC6):5(C3xS3)324,173
(C3xC6):6(C3xS3) = C6xC33:C2φ: C3xS3/C32C2 ⊆ Aut C3xC6108(C3xC6):6(C3xS3)324,174

Non-split extensions G=N.Q with N=C3xC6 and Q=C3xS3
extensionφ:Q→Aut NdρLabelID
(C3xC6).1(C3xS3) = He3:C12φ: C3xS3/C3S3 ⊆ Aut C3xC6363(C3xC6).1(C3xS3)324,13
(C3xC6).2(C3xS3) = He3.C12φ: C3xS3/C3S3 ⊆ Aut C3xC61083(C3xC6).2(C3xS3)324,15
(C3xC6).3(C3xS3) = He3.2C12φ: C3xS3/C3S3 ⊆ Aut C3xC61083(C3xC6).3(C3xS3)324,17
(C3xC6).4(C3xS3) = C2xC3wrS3φ: C3xS3/C3S3 ⊆ Aut C3xC6183(C3xC6).4(C3xS3)324,68
(C3xC6).5(C3xS3) = C2xHe3.C6φ: C3xS3/C3S3 ⊆ Aut C3xC6543(C3xC6).5(C3xS3)324,70
(C3xC6).6(C3xS3) = C2xHe3.2C6φ: C3xS3/C3S3 ⊆ Aut C3xC6543(C3xC6).6(C3xS3)324,72
(C3xC6).7(C3xS3) = C3xC32:C12φ: C3xS3/C3S3 ⊆ Aut C3xC6366(C3xC6).7(C3xS3)324,92
(C3xC6).8(C3xS3) = C3xC9:C12φ: C3xS3/C3S3 ⊆ Aut C3xC6366(C3xC6).8(C3xS3)324,94
(C3xC6).9(C3xS3) = C3xHe3:3C4φ: C3xS3/C3S3 ⊆ Aut C3xC6108(C3xC6).9(C3xS3)324,99
(C3xC6).10(C3xS3) = He3.5C12φ: C3xS3/C3S3 ⊆ Aut C3xC61083(C3xC6).10(C3xS3)324,102
(C3xC6).11(C3xS3) = C6xC9:C6φ: C3xS3/C3S3 ⊆ Aut C3xC6366(C3xC6).11(C3xS3)324,140
(C3xC6).12(C3xS3) = C2xHe3.4C6φ: C3xS3/C3S3 ⊆ Aut C3xC6543(C3xC6).12(C3xS3)324,148
(C3xC6).13(C3xS3) = C33:C12φ: C3xS3/C3C6 ⊆ Aut C3xC6366-(C3xC6).13(C3xS3)324,14
(C3xC6).14(C3xS3) = He3.Dic3φ: C3xS3/C3C6 ⊆ Aut C3xC61086-(C3xC6).14(C3xS3)324,16
(C3xC6).15(C3xS3) = He3.2Dic3φ: C3xS3/C3C6 ⊆ Aut C3xC61086-(C3xC6).15(C3xS3)324,18
(C3xC6).16(C3xS3) = C2xC33:C6φ: C3xS3/C3C6 ⊆ Aut C3xC6186+(C3xC6).16(C3xS3)324,69
(C3xC6).17(C3xS3) = C2xHe3.S3φ: C3xS3/C3C6 ⊆ Aut C3xC6546+(C3xC6).17(C3xS3)324,71
(C3xC6).18(C3xS3) = C2xHe3.2S3φ: C3xS3/C3C6 ⊆ Aut C3xC6546+(C3xC6).18(C3xS3)324,73
(C3xC6).19(C3xS3) = C33:4C12φ: C3xS3/C3C6 ⊆ Aut C3xC6108(C3xC6).19(C3xS3)324,98
(C3xC6).20(C3xS3) = He3.4Dic3φ: C3xS3/C3C6 ⊆ Aut C3xC61086-(C3xC6).20(C3xS3)324,101
(C3xC6).21(C3xS3) = C2xHe3.4S3φ: C3xS3/C3C6 ⊆ Aut C3xC6546+(C3xC6).21(C3xS3)324,147
(C3xC6).22(C3xS3) = Dic3xHe3φ: C3xS3/S3C3 ⊆ Aut C3xC6366(C3xC6).22(C3xS3)324,93
(C3xC6).23(C3xS3) = Dic3x3- 1+2φ: C3xS3/S3C3 ⊆ Aut C3xC6366(C3xC6).23(C3xS3)324,95
(C3xC6).24(C3xS3) = C2xS3x3- 1+2φ: C3xS3/S3C3 ⊆ Aut C3xC6366(C3xC6).24(C3xS3)324,141
(C3xC6).25(C3xS3) = C9xDic9φ: C3xS3/C32C2 ⊆ Aut C3xC6362(C3xC6).25(C3xS3)324,6
(C3xC6).26(C3xS3) = C32:C36φ: C3xS3/C32C2 ⊆ Aut C3xC6366(C3xC6).26(C3xS3)324,7
(C3xC6).27(C3xS3) = C32:Dic9φ: C3xS3/C32C2 ⊆ Aut C3xC6108(C3xC6).27(C3xS3)324,8
(C3xC6).28(C3xS3) = C9:C36φ: C3xS3/C32C2 ⊆ Aut C3xC6366(C3xC6).28(C3xS3)324,9
(C3xC6).29(C3xS3) = D9xC18φ: C3xS3/C32C2 ⊆ Aut C3xC6362(C3xC6).29(C3xS3)324,61
(C3xC6).30(C3xS3) = C2xC32:C18φ: C3xS3/C32C2 ⊆ Aut C3xC6366(C3xC6).30(C3xS3)324,62
(C3xC6).31(C3xS3) = C2xC32:D9φ: C3xS3/C32C2 ⊆ Aut C3xC654(C3xC6).31(C3xS3)324,63
(C3xC6).32(C3xS3) = C2xC9:C18φ: C3xS3/C32C2 ⊆ Aut C3xC6366(C3xC6).32(C3xS3)324,64
(C3xC6).33(C3xS3) = C32xDic9φ: C3xS3/C32C2 ⊆ Aut C3xC6108(C3xC6).33(C3xS3)324,90
(C3xC6).34(C3xS3) = C3xC9:Dic3φ: C3xS3/C32C2 ⊆ Aut C3xC6108(C3xC6).34(C3xS3)324,96
(C3xC6).35(C3xS3) = C9xC3:Dic3φ: C3xS3/C32C2 ⊆ Aut C3xC6108(C3xC6).35(C3xS3)324,97
(C3xC6).36(C3xS3) = C33.Dic3φ: C3xS3/C32C2 ⊆ Aut C3xC6108(C3xC6).36(C3xS3)324,100
(C3xC6).37(C3xS3) = D9xC3xC6φ: C3xS3/C32C2 ⊆ Aut C3xC6108(C3xC6).37(C3xS3)324,136
(C3xC6).38(C3xS3) = C6xC9:S3φ: C3xS3/C32C2 ⊆ Aut C3xC6108(C3xC6).38(C3xS3)324,142
(C3xC6).39(C3xS3) = C18xC3:S3φ: C3xS3/C32C2 ⊆ Aut C3xC6108(C3xC6).39(C3xS3)324,143
(C3xC6).40(C3xS3) = C2xC33.S3φ: C3xS3/C32C2 ⊆ Aut C3xC654(C3xC6).40(C3xS3)324,146
(C3xC6).41(C3xS3) = C32xC3:Dic3φ: C3xS3/C32C2 ⊆ Aut C3xC636(C3xC6).41(C3xS3)324,156
(C3xC6).42(C3xS3) = C3xC33:5C4φ: C3xS3/C32C2 ⊆ Aut C3xC6108(C3xC6).42(C3xS3)324,157
(C3xC6).43(C3xS3) = Dic3xC3xC9central extension (φ=1)108(C3xC6).43(C3xS3)324,91
(C3xC6).44(C3xS3) = S3xC3xC18central extension (φ=1)108(C3xC6).44(C3xS3)324,137
(C3xC6).45(C3xS3) = Dic3xC33central extension (φ=1)108(C3xC6).45(C3xS3)324,155

׿
x
:
Z
F
o
wr
Q
<