extension | φ:Q→Aut N | d | ρ | Label | ID |
(C3xC6).1(C3xS3) = He3:C12 | φ: C3xS3/C3 → S3 ⊆ Aut C3xC6 | 36 | 3 | (C3xC6).1(C3xS3) | 324,13 |
(C3xC6).2(C3xS3) = He3.C12 | φ: C3xS3/C3 → S3 ⊆ Aut C3xC6 | 108 | 3 | (C3xC6).2(C3xS3) | 324,15 |
(C3xC6).3(C3xS3) = He3.2C12 | φ: C3xS3/C3 → S3 ⊆ Aut C3xC6 | 108 | 3 | (C3xC6).3(C3xS3) | 324,17 |
(C3xC6).4(C3xS3) = C2xC3wrS3 | φ: C3xS3/C3 → S3 ⊆ Aut C3xC6 | 18 | 3 | (C3xC6).4(C3xS3) | 324,68 |
(C3xC6).5(C3xS3) = C2xHe3.C6 | φ: C3xS3/C3 → S3 ⊆ Aut C3xC6 | 54 | 3 | (C3xC6).5(C3xS3) | 324,70 |
(C3xC6).6(C3xS3) = C2xHe3.2C6 | φ: C3xS3/C3 → S3 ⊆ Aut C3xC6 | 54 | 3 | (C3xC6).6(C3xS3) | 324,72 |
(C3xC6).7(C3xS3) = C3xC32:C12 | φ: C3xS3/C3 → S3 ⊆ Aut C3xC6 | 36 | 6 | (C3xC6).7(C3xS3) | 324,92 |
(C3xC6).8(C3xS3) = C3xC9:C12 | φ: C3xS3/C3 → S3 ⊆ Aut C3xC6 | 36 | 6 | (C3xC6).8(C3xS3) | 324,94 |
(C3xC6).9(C3xS3) = C3xHe3:3C4 | φ: C3xS3/C3 → S3 ⊆ Aut C3xC6 | 108 | | (C3xC6).9(C3xS3) | 324,99 |
(C3xC6).10(C3xS3) = He3.5C12 | φ: C3xS3/C3 → S3 ⊆ Aut C3xC6 | 108 | 3 | (C3xC6).10(C3xS3) | 324,102 |
(C3xC6).11(C3xS3) = C6xC9:C6 | φ: C3xS3/C3 → S3 ⊆ Aut C3xC6 | 36 | 6 | (C3xC6).11(C3xS3) | 324,140 |
(C3xC6).12(C3xS3) = C2xHe3.4C6 | φ: C3xS3/C3 → S3 ⊆ Aut C3xC6 | 54 | 3 | (C3xC6).12(C3xS3) | 324,148 |
(C3xC6).13(C3xS3) = C33:C12 | φ: C3xS3/C3 → C6 ⊆ Aut C3xC6 | 36 | 6- | (C3xC6).13(C3xS3) | 324,14 |
(C3xC6).14(C3xS3) = He3.Dic3 | φ: C3xS3/C3 → C6 ⊆ Aut C3xC6 | 108 | 6- | (C3xC6).14(C3xS3) | 324,16 |
(C3xC6).15(C3xS3) = He3.2Dic3 | φ: C3xS3/C3 → C6 ⊆ Aut C3xC6 | 108 | 6- | (C3xC6).15(C3xS3) | 324,18 |
(C3xC6).16(C3xS3) = C2xC33:C6 | φ: C3xS3/C3 → C6 ⊆ Aut C3xC6 | 18 | 6+ | (C3xC6).16(C3xS3) | 324,69 |
(C3xC6).17(C3xS3) = C2xHe3.S3 | φ: C3xS3/C3 → C6 ⊆ Aut C3xC6 | 54 | 6+ | (C3xC6).17(C3xS3) | 324,71 |
(C3xC6).18(C3xS3) = C2xHe3.2S3 | φ: C3xS3/C3 → C6 ⊆ Aut C3xC6 | 54 | 6+ | (C3xC6).18(C3xS3) | 324,73 |
(C3xC6).19(C3xS3) = C33:4C12 | φ: C3xS3/C3 → C6 ⊆ Aut C3xC6 | 108 | | (C3xC6).19(C3xS3) | 324,98 |
(C3xC6).20(C3xS3) = He3.4Dic3 | φ: C3xS3/C3 → C6 ⊆ Aut C3xC6 | 108 | 6- | (C3xC6).20(C3xS3) | 324,101 |
(C3xC6).21(C3xS3) = C2xHe3.4S3 | φ: C3xS3/C3 → C6 ⊆ Aut C3xC6 | 54 | 6+ | (C3xC6).21(C3xS3) | 324,147 |
(C3xC6).22(C3xS3) = Dic3xHe3 | φ: C3xS3/S3 → C3 ⊆ Aut C3xC6 | 36 | 6 | (C3xC6).22(C3xS3) | 324,93 |
(C3xC6).23(C3xS3) = Dic3x3- 1+2 | φ: C3xS3/S3 → C3 ⊆ Aut C3xC6 | 36 | 6 | (C3xC6).23(C3xS3) | 324,95 |
(C3xC6).24(C3xS3) = C2xS3x3- 1+2 | φ: C3xS3/S3 → C3 ⊆ Aut C3xC6 | 36 | 6 | (C3xC6).24(C3xS3) | 324,141 |
(C3xC6).25(C3xS3) = C9xDic9 | φ: C3xS3/C32 → C2 ⊆ Aut C3xC6 | 36 | 2 | (C3xC6).25(C3xS3) | 324,6 |
(C3xC6).26(C3xS3) = C32:C36 | φ: C3xS3/C32 → C2 ⊆ Aut C3xC6 | 36 | 6 | (C3xC6).26(C3xS3) | 324,7 |
(C3xC6).27(C3xS3) = C32:Dic9 | φ: C3xS3/C32 → C2 ⊆ Aut C3xC6 | 108 | | (C3xC6).27(C3xS3) | 324,8 |
(C3xC6).28(C3xS3) = C9:C36 | φ: C3xS3/C32 → C2 ⊆ Aut C3xC6 | 36 | 6 | (C3xC6).28(C3xS3) | 324,9 |
(C3xC6).29(C3xS3) = D9xC18 | φ: C3xS3/C32 → C2 ⊆ Aut C3xC6 | 36 | 2 | (C3xC6).29(C3xS3) | 324,61 |
(C3xC6).30(C3xS3) = C2xC32:C18 | φ: C3xS3/C32 → C2 ⊆ Aut C3xC6 | 36 | 6 | (C3xC6).30(C3xS3) | 324,62 |
(C3xC6).31(C3xS3) = C2xC32:D9 | φ: C3xS3/C32 → C2 ⊆ Aut C3xC6 | 54 | | (C3xC6).31(C3xS3) | 324,63 |
(C3xC6).32(C3xS3) = C2xC9:C18 | φ: C3xS3/C32 → C2 ⊆ Aut C3xC6 | 36 | 6 | (C3xC6).32(C3xS3) | 324,64 |
(C3xC6).33(C3xS3) = C32xDic9 | φ: C3xS3/C32 → C2 ⊆ Aut C3xC6 | 108 | | (C3xC6).33(C3xS3) | 324,90 |
(C3xC6).34(C3xS3) = C3xC9:Dic3 | φ: C3xS3/C32 → C2 ⊆ Aut C3xC6 | 108 | | (C3xC6).34(C3xS3) | 324,96 |
(C3xC6).35(C3xS3) = C9xC3:Dic3 | φ: C3xS3/C32 → C2 ⊆ Aut C3xC6 | 108 | | (C3xC6).35(C3xS3) | 324,97 |
(C3xC6).36(C3xS3) = C33.Dic3 | φ: C3xS3/C32 → C2 ⊆ Aut C3xC6 | 108 | | (C3xC6).36(C3xS3) | 324,100 |
(C3xC6).37(C3xS3) = D9xC3xC6 | φ: C3xS3/C32 → C2 ⊆ Aut C3xC6 | 108 | | (C3xC6).37(C3xS3) | 324,136 |
(C3xC6).38(C3xS3) = C6xC9:S3 | φ: C3xS3/C32 → C2 ⊆ Aut C3xC6 | 108 | | (C3xC6).38(C3xS3) | 324,142 |
(C3xC6).39(C3xS3) = C18xC3:S3 | φ: C3xS3/C32 → C2 ⊆ Aut C3xC6 | 108 | | (C3xC6).39(C3xS3) | 324,143 |
(C3xC6).40(C3xS3) = C2xC33.S3 | φ: C3xS3/C32 → C2 ⊆ Aut C3xC6 | 54 | | (C3xC6).40(C3xS3) | 324,146 |
(C3xC6).41(C3xS3) = C32xC3:Dic3 | φ: C3xS3/C32 → C2 ⊆ Aut C3xC6 | 36 | | (C3xC6).41(C3xS3) | 324,156 |
(C3xC6).42(C3xS3) = C3xC33:5C4 | φ: C3xS3/C32 → C2 ⊆ Aut C3xC6 | 108 | | (C3xC6).42(C3xS3) | 324,157 |
(C3xC6).43(C3xS3) = Dic3xC3xC9 | central extension (φ=1) | 108 | | (C3xC6).43(C3xS3) | 324,91 |
(C3xC6).44(C3xS3) = S3xC3xC18 | central extension (φ=1) | 108 | | (C3xC6).44(C3xS3) | 324,137 |
(C3xC6).45(C3xS3) = Dic3xC33 | central extension (φ=1) | 108 | | (C3xC6).45(C3xS3) | 324,155 |