Extensions 1→N→G→Q→1 with N=C21 and Q=SD16

Direct product G=NxQ with N=C21 and Q=SD16
dρLabelID
SD16xC211682SD16xC21336,112

Semidirect products G=N:Q with N=C21 and Q=SD16
extensionφ:Q→Aut NdρLabelID
C21:1SD16 = C28.D6φ: SD16/C4C22 ⊆ Aut C211684C21:1SD16336,32
C21:2SD16 = C42.D4φ: SD16/C4C22 ⊆ Aut C211684C21:2SD16336,33
C21:3SD16 = C6.D28φ: SD16/C4C22 ⊆ Aut C211684-C21:3SD16336,34
C21:4SD16 = C21:SD16φ: SD16/C4C22 ⊆ Aut C211684+C21:4SD16336,35
C21:5SD16 = D12.D7φ: SD16/C4C22 ⊆ Aut C211684-C21:5SD16336,36
C21:6SD16 = Dic6:D7φ: SD16/C4C22 ⊆ Aut C211684+C21:6SD16336,37
C21:7SD16 = C8:D21φ: SD16/C8C2 ⊆ Aut C211682C21:7SD16336,92
C21:8SD16 = C3xC56:C2φ: SD16/C8C2 ⊆ Aut C211682C21:8SD16336,60
C21:9SD16 = C7xC24:C2φ: SD16/C8C2 ⊆ Aut C211682C21:9SD16336,76
C21:10SD16 = D4.D21φ: SD16/D4C2 ⊆ Aut C211684-C21:10SD16336,102
C21:11SD16 = C3xD4.D7φ: SD16/D4C2 ⊆ Aut C211684C21:11SD16336,70
C21:12SD16 = C7xD4.S3φ: SD16/D4C2 ⊆ Aut C211684C21:12SD16336,86
C21:13SD16 = Q8:2D21φ: SD16/Q8C2 ⊆ Aut C211684+C21:13SD16336,103
C21:14SD16 = C3xQ8:D7φ: SD16/Q8C2 ⊆ Aut C211684C21:14SD16336,71
C21:15SD16 = C7xQ8:2S3φ: SD16/Q8C2 ⊆ Aut C211684C21:15SD16336,87


׿
x
:
Z
F
o
wr
Q
<