Extensions 1→N→G→Q→1 with N=C14 and Q=C3×Q8

Direct product G=N×Q with N=C14 and Q=C3×Q8
dρLabelID
Q8×C42336Q8xC42336,206

Semidirect products G=N:Q with N=C14 and Q=C3×Q8
extensionφ:Q→Aut NdρLabelID
C14⋊(C3×Q8) = C2×C4.F7φ: C3×Q8/C4C6 ⊆ Aut C14112C14:(C3xQ8)336,121
C142(C3×Q8) = C2×Q8×C7⋊C3φ: C3×Q8/Q8C3 ⊆ Aut C14112C14:2(C3xQ8)336,166
C143(C3×Q8) = C6×Dic14φ: C3×Q8/C12C2 ⊆ Aut C14336C14:3(C3xQ8)336,174

Non-split extensions G=N.Q with N=C14 and Q=C3×Q8
extensionφ:Q→Aut NdρLabelID
C14.1(C3×Q8) = Dic7⋊C12φ: C3×Q8/C4C6 ⊆ Aut C14112C14.1(C3xQ8)336,15
C14.2(C3×Q8) = C28⋊C12φ: C3×Q8/C4C6 ⊆ Aut C14112C14.2(C3xQ8)336,16
C14.3(C3×Q8) = C4⋊C4×C7⋊C3φ: C3×Q8/Q8C3 ⊆ Aut C14112C14.3(C3xQ8)336,50
C14.4(C3×Q8) = C3×Dic7⋊C4φ: C3×Q8/C12C2 ⊆ Aut C14336C14.4(C3xQ8)336,66
C14.5(C3×Q8) = C3×C4⋊Dic7φ: C3×Q8/C12C2 ⊆ Aut C14336C14.5(C3xQ8)336,67
C14.6(C3×Q8) = C4⋊C4×C21central extension (φ=1)336C14.6(C3xQ8)336,108

׿
×
𝔽