Copied to
clipboard

G = C4⋊C4×C7⋊C3order 336 = 24·3·7

Direct product of C4⋊C4 and C7⋊C3

direct product, metacyclic, supersoluble, monomial

Aliases: C4⋊C4×C7⋊C3, C283C12, (C2×C28).9C6, C14.3(C3×Q8), C14.13(C3×D4), C14.12(C2×C12), C4⋊(C4×C7⋊C3), (C7×C4⋊C4)⋊C3, C73(C3×C4⋊C4), C2.(Q8×C7⋊C3), (C4×C7⋊C3)⋊3C4, C2.2(D4×C7⋊C3), (C2×C7⋊C3).3Q8, (C2×C7⋊C3).13D4, (C2×C14).16(C2×C6), C22.4(C22×C7⋊C3), (C22×C7⋊C3).15C22, C2.4(C2×C4×C7⋊C3), (C2×C4×C7⋊C3).6C2, (C2×C4).1(C2×C7⋊C3), (C2×C7⋊C3).12(C2×C4), SmallGroup(336,50)

Series: Derived Chief Lower central Upper central

C1C14 — C4⋊C4×C7⋊C3
C1C7C14C2×C14C22×C7⋊C3C2×C4×C7⋊C3 — C4⋊C4×C7⋊C3
C7C14 — C4⋊C4×C7⋊C3
C1C22C4⋊C4

Generators and relations for C4⋊C4×C7⋊C3
 G = < a,b,c,d | a4=b4=c7=d3=1, bab-1=a-1, ac=ca, ad=da, bc=cb, bd=db, dcd-1=c4 >

7C3
2C4
2C4
7C6
7C6
7C6
7C12
7C2×C6
7C12
14C12
14C12
2C28
2C28
7C2×C12
7C2×C12
7C2×C12
2C4×C7⋊C3
2C4×C7⋊C3
7C3×C4⋊C4

Smallest permutation representation of C4⋊C4×C7⋊C3
On 112 points
Generators in S112
(1 78 8 71)(2 79 9 72)(3 80 10 73)(4 81 11 74)(5 82 12 75)(6 83 13 76)(7 84 14 77)(15 64 22 57)(16 65 23 58)(17 66 24 59)(18 67 25 60)(19 68 26 61)(20 69 27 62)(21 70 28 63)(29 106 36 99)(30 107 37 100)(31 108 38 101)(32 109 39 102)(33 110 40 103)(34 111 41 104)(35 112 42 105)(43 92 50 85)(44 93 51 86)(45 94 52 87)(46 95 53 88)(47 96 54 89)(48 97 55 90)(49 98 56 91)
(1 43 15 29)(2 44 16 30)(3 45 17 31)(4 46 18 32)(5 47 19 33)(6 48 20 34)(7 49 21 35)(8 50 22 36)(9 51 23 37)(10 52 24 38)(11 53 25 39)(12 54 26 40)(13 55 27 41)(14 56 28 42)(57 106 71 92)(58 107 72 93)(59 108 73 94)(60 109 74 95)(61 110 75 96)(62 111 76 97)(63 112 77 98)(64 99 78 85)(65 100 79 86)(66 101 80 87)(67 102 81 88)(68 103 82 89)(69 104 83 90)(70 105 84 91)
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)(29 30 31 32 33 34 35)(36 37 38 39 40 41 42)(43 44 45 46 47 48 49)(50 51 52 53 54 55 56)(57 58 59 60 61 62 63)(64 65 66 67 68 69 70)(71 72 73 74 75 76 77)(78 79 80 81 82 83 84)(85 86 87 88 89 90 91)(92 93 94 95 96 97 98)(99 100 101 102 103 104 105)(106 107 108 109 110 111 112)
(2 3 5)(4 7 6)(9 10 12)(11 14 13)(16 17 19)(18 21 20)(23 24 26)(25 28 27)(30 31 33)(32 35 34)(37 38 40)(39 42 41)(44 45 47)(46 49 48)(51 52 54)(53 56 55)(58 59 61)(60 63 62)(65 66 68)(67 70 69)(72 73 75)(74 77 76)(79 80 82)(81 84 83)(86 87 89)(88 91 90)(93 94 96)(95 98 97)(100 101 103)(102 105 104)(107 108 110)(109 112 111)

G:=sub<Sym(112)| (1,78,8,71)(2,79,9,72)(3,80,10,73)(4,81,11,74)(5,82,12,75)(6,83,13,76)(7,84,14,77)(15,64,22,57)(16,65,23,58)(17,66,24,59)(18,67,25,60)(19,68,26,61)(20,69,27,62)(21,70,28,63)(29,106,36,99)(30,107,37,100)(31,108,38,101)(32,109,39,102)(33,110,40,103)(34,111,41,104)(35,112,42,105)(43,92,50,85)(44,93,51,86)(45,94,52,87)(46,95,53,88)(47,96,54,89)(48,97,55,90)(49,98,56,91), (1,43,15,29)(2,44,16,30)(3,45,17,31)(4,46,18,32)(5,47,19,33)(6,48,20,34)(7,49,21,35)(8,50,22,36)(9,51,23,37)(10,52,24,38)(11,53,25,39)(12,54,26,40)(13,55,27,41)(14,56,28,42)(57,106,71,92)(58,107,72,93)(59,108,73,94)(60,109,74,95)(61,110,75,96)(62,111,76,97)(63,112,77,98)(64,99,78,85)(65,100,79,86)(66,101,80,87)(67,102,81,88)(68,103,82,89)(69,104,83,90)(70,105,84,91), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56)(57,58,59,60,61,62,63)(64,65,66,67,68,69,70)(71,72,73,74,75,76,77)(78,79,80,81,82,83,84)(85,86,87,88,89,90,91)(92,93,94,95,96,97,98)(99,100,101,102,103,104,105)(106,107,108,109,110,111,112), (2,3,5)(4,7,6)(9,10,12)(11,14,13)(16,17,19)(18,21,20)(23,24,26)(25,28,27)(30,31,33)(32,35,34)(37,38,40)(39,42,41)(44,45,47)(46,49,48)(51,52,54)(53,56,55)(58,59,61)(60,63,62)(65,66,68)(67,70,69)(72,73,75)(74,77,76)(79,80,82)(81,84,83)(86,87,89)(88,91,90)(93,94,96)(95,98,97)(100,101,103)(102,105,104)(107,108,110)(109,112,111)>;

G:=Group( (1,78,8,71)(2,79,9,72)(3,80,10,73)(4,81,11,74)(5,82,12,75)(6,83,13,76)(7,84,14,77)(15,64,22,57)(16,65,23,58)(17,66,24,59)(18,67,25,60)(19,68,26,61)(20,69,27,62)(21,70,28,63)(29,106,36,99)(30,107,37,100)(31,108,38,101)(32,109,39,102)(33,110,40,103)(34,111,41,104)(35,112,42,105)(43,92,50,85)(44,93,51,86)(45,94,52,87)(46,95,53,88)(47,96,54,89)(48,97,55,90)(49,98,56,91), (1,43,15,29)(2,44,16,30)(3,45,17,31)(4,46,18,32)(5,47,19,33)(6,48,20,34)(7,49,21,35)(8,50,22,36)(9,51,23,37)(10,52,24,38)(11,53,25,39)(12,54,26,40)(13,55,27,41)(14,56,28,42)(57,106,71,92)(58,107,72,93)(59,108,73,94)(60,109,74,95)(61,110,75,96)(62,111,76,97)(63,112,77,98)(64,99,78,85)(65,100,79,86)(66,101,80,87)(67,102,81,88)(68,103,82,89)(69,104,83,90)(70,105,84,91), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56)(57,58,59,60,61,62,63)(64,65,66,67,68,69,70)(71,72,73,74,75,76,77)(78,79,80,81,82,83,84)(85,86,87,88,89,90,91)(92,93,94,95,96,97,98)(99,100,101,102,103,104,105)(106,107,108,109,110,111,112), (2,3,5)(4,7,6)(9,10,12)(11,14,13)(16,17,19)(18,21,20)(23,24,26)(25,28,27)(30,31,33)(32,35,34)(37,38,40)(39,42,41)(44,45,47)(46,49,48)(51,52,54)(53,56,55)(58,59,61)(60,63,62)(65,66,68)(67,70,69)(72,73,75)(74,77,76)(79,80,82)(81,84,83)(86,87,89)(88,91,90)(93,94,96)(95,98,97)(100,101,103)(102,105,104)(107,108,110)(109,112,111) );

G=PermutationGroup([[(1,78,8,71),(2,79,9,72),(3,80,10,73),(4,81,11,74),(5,82,12,75),(6,83,13,76),(7,84,14,77),(15,64,22,57),(16,65,23,58),(17,66,24,59),(18,67,25,60),(19,68,26,61),(20,69,27,62),(21,70,28,63),(29,106,36,99),(30,107,37,100),(31,108,38,101),(32,109,39,102),(33,110,40,103),(34,111,41,104),(35,112,42,105),(43,92,50,85),(44,93,51,86),(45,94,52,87),(46,95,53,88),(47,96,54,89),(48,97,55,90),(49,98,56,91)], [(1,43,15,29),(2,44,16,30),(3,45,17,31),(4,46,18,32),(5,47,19,33),(6,48,20,34),(7,49,21,35),(8,50,22,36),(9,51,23,37),(10,52,24,38),(11,53,25,39),(12,54,26,40),(13,55,27,41),(14,56,28,42),(57,106,71,92),(58,107,72,93),(59,108,73,94),(60,109,74,95),(61,110,75,96),(62,111,76,97),(63,112,77,98),(64,99,78,85),(65,100,79,86),(66,101,80,87),(67,102,81,88),(68,103,82,89),(69,104,83,90),(70,105,84,91)], [(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28),(29,30,31,32,33,34,35),(36,37,38,39,40,41,42),(43,44,45,46,47,48,49),(50,51,52,53,54,55,56),(57,58,59,60,61,62,63),(64,65,66,67,68,69,70),(71,72,73,74,75,76,77),(78,79,80,81,82,83,84),(85,86,87,88,89,90,91),(92,93,94,95,96,97,98),(99,100,101,102,103,104,105),(106,107,108,109,110,111,112)], [(2,3,5),(4,7,6),(9,10,12),(11,14,13),(16,17,19),(18,21,20),(23,24,26),(25,28,27),(30,31,33),(32,35,34),(37,38,40),(39,42,41),(44,45,47),(46,49,48),(51,52,54),(53,56,55),(58,59,61),(60,63,62),(65,66,68),(67,70,69),(72,73,75),(74,77,76),(79,80,82),(81,84,83),(86,87,89),(88,91,90),(93,94,96),(95,98,97),(100,101,103),(102,105,104),(107,108,110),(109,112,111)]])

50 conjugacy classes

class 1 2A2B2C3A3B4A···4F6A···6F7A7B12A···12L14A···14F28A···28L
order1222334···46···67712···1214···1428···28
size1111772···27···73314···143···36···6

50 irreducible representations

dim111111222233366
type+++-
imageC1C2C3C4C6C12D4Q8C3×D4C3×Q8C7⋊C3C2×C7⋊C3C4×C7⋊C3D4×C7⋊C3Q8×C7⋊C3
kernelC4⋊C4×C7⋊C3C2×C4×C7⋊C3C7×C4⋊C4C4×C7⋊C3C2×C28C28C2×C7⋊C3C2×C7⋊C3C14C14C4⋊C4C2×C4C4C2C2
# reps132468112226822

Matrix representation of C4⋊C4×C7⋊C3 in GL7(𝔽337)

1231400000
31432500000
0032523000
002312000
0000100
0000010
0000001
,
0100000
336000000
000148000
001890000
000033600
000003360
000000336
,
1000000
0100000
0010000
0001000
0000001
000010213
000001212
,
208000000
020800000
001280000
000128000
000010212
000000336
000001336

G:=sub<GL(7,GF(337))| [12,314,0,0,0,0,0,314,325,0,0,0,0,0,0,0,325,23,0,0,0,0,0,23,12,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1],[0,336,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,189,0,0,0,0,0,148,0,0,0,0,0,0,0,0,336,0,0,0,0,0,0,0,336,0,0,0,0,0,0,0,336],[1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,1,213,212],[208,0,0,0,0,0,0,0,208,0,0,0,0,0,0,0,128,0,0,0,0,0,0,0,128,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,212,336,336] >;

C4⋊C4×C7⋊C3 in GAP, Magma, Sage, TeX

C_4\rtimes C_4\times C_7\rtimes C_3
% in TeX

G:=Group("C4:C4xC7:C3");
// GroupNames label

G:=SmallGroup(336,50);
// by ID

G=gap.SmallGroup(336,50);
# by ID

G:=PCGroup([6,-2,-2,-3,-2,-2,-7,144,313,79,881]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=c^7=d^3=1,b*a*b^-1=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d^-1=c^4>;
// generators/relations

Export

Subgroup lattice of C4⋊C4×C7⋊C3 in TeX

׿
×
𝔽