extension | φ:Q→Aut N | d | ρ | Label | ID |
C22.1(C2×D4) = C44⋊2Q8 | φ: C2×D4/C2×C4 → C2 ⊆ Aut C22 | 352 | | C22.1(C2xD4) | 352,64 |
C22.2(C2×D4) = C4×D44 | φ: C2×D4/C2×C4 → C2 ⊆ Aut C22 | 176 | | C22.2(C2xD4) | 352,68 |
C22.3(C2×D4) = C4⋊D44 | φ: C2×D4/C2×C4 → C2 ⊆ Aut C22 | 176 | | C22.3(C2xD4) | 352,69 |
C22.4(C2×D4) = C4.D44 | φ: C2×D4/C2×C4 → C2 ⊆ Aut C22 | 176 | | C22.4(C2xD4) | 352,70 |
C22.5(C2×D4) = C22⋊D44 | φ: C2×D4/C2×C4 → C2 ⊆ Aut C22 | 88 | | C22.5(C2xD4) | 352,77 |
C22.6(C2×D4) = C22.D44 | φ: C2×D4/C2×C4 → C2 ⊆ Aut C22 | 176 | | C22.6(C2xD4) | 352,81 |
C22.7(C2×D4) = C4⋊2D44 | φ: C2×D4/C2×C4 → C2 ⊆ Aut C22 | 176 | | C22.7(C2xD4) | 352,90 |
C22.8(C2×D4) = D22⋊2Q8 | φ: C2×D4/C2×C4 → C2 ⊆ Aut C22 | 176 | | C22.8(C2xD4) | 352,92 |
C22.9(C2×D4) = C2×C8⋊D11 | φ: C2×D4/C2×C4 → C2 ⊆ Aut C22 | 176 | | C22.9(C2xD4) | 352,97 |
C22.10(C2×D4) = C2×D88 | φ: C2×D4/C2×C4 → C2 ⊆ Aut C22 | 176 | | C22.10(C2xD4) | 352,98 |
C22.11(C2×D4) = D88⋊7C2 | φ: C2×D4/C2×C4 → C2 ⊆ Aut C22 | 176 | 2 | C22.11(C2xD4) | 352,99 |
C22.12(C2×D4) = C2×Dic44 | φ: C2×D4/C2×C4 → C2 ⊆ Aut C22 | 352 | | C22.12(C2xD4) | 352,100 |
C22.13(C2×D4) = C8⋊D22 | φ: C2×D4/C2×C4 → C2 ⊆ Aut C22 | 88 | 4+ | C22.13(C2xD4) | 352,103 |
C22.14(C2×D4) = C8.D22 | φ: C2×D4/C2×C4 → C2 ⊆ Aut C22 | 176 | 4- | C22.14(C2xD4) | 352,104 |
C22.15(C2×D4) = C2×C44⋊C4 | φ: C2×D4/C2×C4 → C2 ⊆ Aut C22 | 352 | | C22.15(C2xD4) | 352,120 |
C22.16(C2×D4) = C22⋊Dic22 | φ: C2×D4/D4 → C2 ⊆ Aut C22 | 176 | | C22.16(C2xD4) | 352,73 |
C22.17(C2×D4) = C22⋊C4×D11 | φ: C2×D4/D4 → C2 ⊆ Aut C22 | 88 | | C22.17(C2xD4) | 352,75 |
C22.18(C2×D4) = Dic11⋊4D4 | φ: C2×D4/D4 → C2 ⊆ Aut C22 | 176 | | C22.18(C2xD4) | 352,76 |
C22.19(C2×D4) = D22.D4 | φ: C2×D4/D4 → C2 ⊆ Aut C22 | 176 | | C22.19(C2xD4) | 352,78 |
C22.20(C2×D4) = D22⋊D4 | φ: C2×D4/D4 → C2 ⊆ Aut C22 | 176 | | C22.20(C2xD4) | 352,79 |
C22.21(C2×D4) = Dic11.D4 | φ: C2×D4/D4 → C2 ⊆ Aut C22 | 176 | | C22.21(C2xD4) | 352,80 |
C22.22(C2×D4) = C44⋊Q8 | φ: C2×D4/D4 → C2 ⊆ Aut C22 | 352 | | C22.22(C2xD4) | 352,83 |
C22.23(C2×D4) = C4⋊C4×D11 | φ: C2×D4/D4 → C2 ⊆ Aut C22 | 176 | | C22.23(C2xD4) | 352,86 |
C22.24(C2×D4) = D44⋊C4 | φ: C2×D4/D4 → C2 ⊆ Aut C22 | 176 | | C22.24(C2xD4) | 352,88 |
C22.25(C2×D4) = D22.5D4 | φ: C2×D4/D4 → C2 ⊆ Aut C22 | 176 | | C22.25(C2xD4) | 352,89 |
C22.26(C2×D4) = D22⋊Q8 | φ: C2×D4/D4 → C2 ⊆ Aut C22 | 176 | | C22.26(C2xD4) | 352,91 |
C22.27(C2×D4) = D8×D11 | φ: C2×D4/D4 → C2 ⊆ Aut C22 | 88 | 4+ | C22.27(C2xD4) | 352,105 |
C22.28(C2×D4) = D4⋊D22 | φ: C2×D4/D4 → C2 ⊆ Aut C22 | 88 | 4 | C22.28(C2xD4) | 352,106 |
C22.29(C2×D4) = D8⋊3D11 | φ: C2×D4/D4 → C2 ⊆ Aut C22 | 176 | 4- | C22.29(C2xD4) | 352,107 |
C22.30(C2×D4) = SD16×D11 | φ: C2×D4/D4 → C2 ⊆ Aut C22 | 88 | 4 | C22.30(C2xD4) | 352,108 |
C22.31(C2×D4) = D88⋊C2 | φ: C2×D4/D4 → C2 ⊆ Aut C22 | 88 | 4+ | C22.31(C2xD4) | 352,109 |
C22.32(C2×D4) = D4.D22 | φ: C2×D4/D4 → C2 ⊆ Aut C22 | 176 | 4- | C22.32(C2xD4) | 352,110 |
C22.33(C2×D4) = Q8.D22 | φ: C2×D4/D4 → C2 ⊆ Aut C22 | 176 | 4 | C22.33(C2xD4) | 352,111 |
C22.34(C2×D4) = Q16×D11 | φ: C2×D4/D4 → C2 ⊆ Aut C22 | 176 | 4- | C22.34(C2xD4) | 352,112 |
C22.35(C2×D4) = Q16⋊D11 | φ: C2×D4/D4 → C2 ⊆ Aut C22 | 176 | 4 | C22.35(C2xD4) | 352,113 |
C22.36(C2×D4) = D88⋊5C2 | φ: C2×D4/D4 → C2 ⊆ Aut C22 | 176 | 4+ | C22.36(C2xD4) | 352,114 |
C22.37(C2×D4) = D4×Dic11 | φ: C2×D4/D4 → C2 ⊆ Aut C22 | 176 | | C22.37(C2xD4) | 352,129 |
C22.38(C2×D4) = C2×Dic11⋊C4 | φ: C2×D4/C23 → C2 ⊆ Aut C22 | 352 | | C22.38(C2xD4) | 352,118 |
C22.39(C2×D4) = C44.48D4 | φ: C2×D4/C23 → C2 ⊆ Aut C22 | 176 | | C22.39(C2xD4) | 352,119 |
C22.40(C2×D4) = C2×D22⋊C4 | φ: C2×D4/C23 → C2 ⊆ Aut C22 | 176 | | C22.40(C2xD4) | 352,122 |
C22.41(C2×D4) = C4×C11⋊D4 | φ: C2×D4/C23 → C2 ⊆ Aut C22 | 176 | | C22.41(C2xD4) | 352,123 |
C22.42(C2×D4) = C23.23D22 | φ: C2×D4/C23 → C2 ⊆ Aut C22 | 176 | | C22.42(C2xD4) | 352,124 |
C22.43(C2×D4) = C44⋊7D4 | φ: C2×D4/C23 → C2 ⊆ Aut C22 | 176 | | C22.43(C2xD4) | 352,125 |
C22.44(C2×D4) = C2×D4⋊D11 | φ: C2×D4/C23 → C2 ⊆ Aut C22 | 176 | | C22.44(C2xD4) | 352,126 |
C22.45(C2×D4) = D44⋊6C22 | φ: C2×D4/C23 → C2 ⊆ Aut C22 | 88 | 4 | C22.45(C2xD4) | 352,127 |
C22.46(C2×D4) = C2×D4.D11 | φ: C2×D4/C23 → C2 ⊆ Aut C22 | 176 | | C22.46(C2xD4) | 352,128 |
C22.47(C2×D4) = C23.18D22 | φ: C2×D4/C23 → C2 ⊆ Aut C22 | 176 | | C22.47(C2xD4) | 352,130 |
C22.48(C2×D4) = C44.17D4 | φ: C2×D4/C23 → C2 ⊆ Aut C22 | 176 | | C22.48(C2xD4) | 352,131 |
C22.49(C2×D4) = C23⋊D22 | φ: C2×D4/C23 → C2 ⊆ Aut C22 | 88 | | C22.49(C2xD4) | 352,132 |
C22.50(C2×D4) = C44⋊2D4 | φ: C2×D4/C23 → C2 ⊆ Aut C22 | 176 | | C22.50(C2xD4) | 352,133 |
C22.51(C2×D4) = Dic11⋊D4 | φ: C2×D4/C23 → C2 ⊆ Aut C22 | 176 | | C22.51(C2xD4) | 352,134 |
C22.52(C2×D4) = C44⋊D4 | φ: C2×D4/C23 → C2 ⊆ Aut C22 | 176 | | C22.52(C2xD4) | 352,135 |
C22.53(C2×D4) = C2×Q8⋊D11 | φ: C2×D4/C23 → C2 ⊆ Aut C22 | 176 | | C22.53(C2xD4) | 352,136 |
C22.54(C2×D4) = C44.C23 | φ: C2×D4/C23 → C2 ⊆ Aut C22 | 176 | 4 | C22.54(C2xD4) | 352,137 |
C22.55(C2×D4) = C2×C11⋊Q16 | φ: C2×D4/C23 → C2 ⊆ Aut C22 | 352 | | C22.55(C2xD4) | 352,138 |
C22.56(C2×D4) = Dic11⋊Q8 | φ: C2×D4/C23 → C2 ⊆ Aut C22 | 352 | | C22.56(C2xD4) | 352,139 |
C22.57(C2×D4) = D22⋊3Q8 | φ: C2×D4/C23 → C2 ⊆ Aut C22 | 176 | | C22.57(C2xD4) | 352,141 |
C22.58(C2×D4) = C44.23D4 | φ: C2×D4/C23 → C2 ⊆ Aut C22 | 176 | | C22.58(C2xD4) | 352,142 |
C22.59(C2×D4) = Q8⋊D22 | φ: C2×D4/C23 → C2 ⊆ Aut C22 | 88 | 4+ | C22.59(C2xD4) | 352,144 |
C22.60(C2×D4) = D4.8D22 | φ: C2×D4/C23 → C2 ⊆ Aut C22 | 176 | 4 | C22.60(C2xD4) | 352,145 |
C22.61(C2×D4) = D4.9D22 | φ: C2×D4/C23 → C2 ⊆ Aut C22 | 176 | 4- | C22.61(C2xD4) | 352,146 |
C22.62(C2×D4) = C2×C23.D11 | φ: C2×D4/C23 → C2 ⊆ Aut C22 | 176 | | C22.62(C2xD4) | 352,147 |
C22.63(C2×D4) = C24⋊D11 | φ: C2×D4/C23 → C2 ⊆ Aut C22 | 88 | | C22.63(C2xD4) | 352,148 |
C22.64(C2×D4) = C22⋊C4×C22 | central extension (φ=1) | 176 | | C22.64(C2xD4) | 352,150 |
C22.65(C2×D4) = C4⋊C4×C22 | central extension (φ=1) | 352 | | C22.65(C2xD4) | 352,151 |
C22.66(C2×D4) = D4×C44 | central extension (φ=1) | 176 | | C22.66(C2xD4) | 352,153 |
C22.67(C2×D4) = C11×C22≀C2 | central extension (φ=1) | 88 | | C22.67(C2xD4) | 352,155 |
C22.68(C2×D4) = C11×C4⋊D4 | central extension (φ=1) | 176 | | C22.68(C2xD4) | 352,156 |
C22.69(C2×D4) = C11×C22⋊Q8 | central extension (φ=1) | 176 | | C22.69(C2xD4) | 352,157 |
C22.70(C2×D4) = C11×C22.D4 | central extension (φ=1) | 176 | | C22.70(C2xD4) | 352,158 |
C22.71(C2×D4) = C11×C4.4D4 | central extension (φ=1) | 176 | | C22.71(C2xD4) | 352,159 |
C22.72(C2×D4) = C11×C4⋊1D4 | central extension (φ=1) | 176 | | C22.72(C2xD4) | 352,162 |
C22.73(C2×D4) = C11×C4⋊Q8 | central extension (φ=1) | 352 | | C22.73(C2xD4) | 352,163 |
C22.74(C2×D4) = D8×C22 | central extension (φ=1) | 176 | | C22.74(C2xD4) | 352,167 |
C22.75(C2×D4) = SD16×C22 | central extension (φ=1) | 176 | | C22.75(C2xD4) | 352,168 |
C22.76(C2×D4) = Q16×C22 | central extension (φ=1) | 352 | | C22.76(C2xD4) | 352,169 |
C22.77(C2×D4) = C11×C4○D8 | central extension (φ=1) | 176 | 2 | C22.77(C2xD4) | 352,170 |
C22.78(C2×D4) = C11×C8⋊C22 | central extension (φ=1) | 88 | 4 | C22.78(C2xD4) | 352,171 |
C22.79(C2×D4) = C11×C8.C22 | central extension (φ=1) | 176 | 4 | C22.79(C2xD4) | 352,172 |