Copied to
clipboard

G = D4⋊D22order 352 = 25·11

2nd semidirect product of D4 and D22 acting via D22/D11=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C82D22, D42D22, D82D11, C884C22, D22.6D4, C44.2C23, Dic11.8D4, D44.1C22, Dic221C22, D4⋊D112C2, (D4×D11)⋊2C2, (C11×D8)⋊4C2, C11⋊C81C22, C8⋊D113C2, C88⋊C23C2, C112(C8⋊C22), D4.D111C2, C22.28(C2×D4), C2.16(D4×D11), D42D111C2, (D4×C11)⋊2C22, C4.2(C22×D11), (C4×D11).1C22, SmallGroup(352,106)

Series: Derived Chief Lower central Upper central

C1C44 — D4⋊D22
C1C11C22C44C4×D11D4×D11 — D4⋊D22
C11C22C44 — D4⋊D22
C1C2C4D8

Generators and relations for D4⋊D22
 G = < a,b,c,d | a8=b2=c11=d2=1, bab=a-1, ac=ca, dad=a5, bc=cb, bd=db, dcd=c-1 >

Subgroups: 506 in 68 conjugacy classes, 27 normal (all characteristic)
C1, C2, C2, C4, C4, C22, C8, C8, C2×C4, D4, D4, Q8, C23, C11, M4(2), D8, D8, SD16, C2×D4, C4○D4, D11, C22, C22, C8⋊C22, Dic11, Dic11, C44, D22, D22, C2×C22, C11⋊C8, C88, Dic22, C4×D11, D44, C2×Dic11, C11⋊D4, D4×C11, C22×D11, C88⋊C2, C8⋊D11, D4⋊D11, D4.D11, C11×D8, D4×D11, D42D11, D4⋊D22
Quotients: C1, C2, C22, D4, C23, C2×D4, D11, C8⋊C22, D22, C22×D11, D4×D11, D4⋊D22

Smallest permutation representation of D4⋊D22
On 88 points
Generators in S88
(1 54 32 87 21 65 43 76)(2 55 33 88 22 66 44 77)(3 45 23 78 12 56 34 67)(4 46 24 79 13 57 35 68)(5 47 25 80 14 58 36 69)(6 48 26 81 15 59 37 70)(7 49 27 82 16 60 38 71)(8 50 28 83 17 61 39 72)(9 51 29 84 18 62 40 73)(10 52 30 85 19 63 41 74)(11 53 31 86 20 64 42 75)
(23 34)(24 35)(25 36)(26 37)(27 38)(28 39)(29 40)(30 41)(31 42)(32 43)(33 44)(45 67)(46 68)(47 69)(48 70)(49 71)(50 72)(51 73)(52 74)(53 75)(54 76)(55 77)(56 78)(57 79)(58 80)(59 81)(60 82)(61 83)(62 84)(63 85)(64 86)(65 87)(66 88)
(1 2 3 4 5 6 7 8 9 10 11)(12 13 14 15 16 17 18 19 20 21 22)(23 24 25 26 27 28 29 30 31 32 33)(34 35 36 37 38 39 40 41 42 43 44)(45 46 47 48 49 50 51 52 53 54 55)(56 57 58 59 60 61 62 63 64 65 66)(67 68 69 70 71 72 73 74 75 76 77)(78 79 80 81 82 83 84 85 86 87 88)
(1 11)(2 10)(3 9)(4 8)(5 7)(12 18)(13 17)(14 16)(19 22)(20 21)(23 29)(24 28)(25 27)(30 33)(31 32)(34 40)(35 39)(36 38)(41 44)(42 43)(45 62)(46 61)(47 60)(48 59)(49 58)(50 57)(51 56)(52 66)(53 65)(54 64)(55 63)(67 84)(68 83)(69 82)(70 81)(71 80)(72 79)(73 78)(74 88)(75 87)(76 86)(77 85)

G:=sub<Sym(88)| (1,54,32,87,21,65,43,76)(2,55,33,88,22,66,44,77)(3,45,23,78,12,56,34,67)(4,46,24,79,13,57,35,68)(5,47,25,80,14,58,36,69)(6,48,26,81,15,59,37,70)(7,49,27,82,16,60,38,71)(8,50,28,83,17,61,39,72)(9,51,29,84,18,62,40,73)(10,52,30,85,19,63,41,74)(11,53,31,86,20,64,42,75), (23,34)(24,35)(25,36)(26,37)(27,38)(28,39)(29,40)(30,41)(31,42)(32,43)(33,44)(45,67)(46,68)(47,69)(48,70)(49,71)(50,72)(51,73)(52,74)(53,75)(54,76)(55,77)(56,78)(57,79)(58,80)(59,81)(60,82)(61,83)(62,84)(63,85)(64,86)(65,87)(66,88), (1,2,3,4,5,6,7,8,9,10,11)(12,13,14,15,16,17,18,19,20,21,22)(23,24,25,26,27,28,29,30,31,32,33)(34,35,36,37,38,39,40,41,42,43,44)(45,46,47,48,49,50,51,52,53,54,55)(56,57,58,59,60,61,62,63,64,65,66)(67,68,69,70,71,72,73,74,75,76,77)(78,79,80,81,82,83,84,85,86,87,88), (1,11)(2,10)(3,9)(4,8)(5,7)(12,18)(13,17)(14,16)(19,22)(20,21)(23,29)(24,28)(25,27)(30,33)(31,32)(34,40)(35,39)(36,38)(41,44)(42,43)(45,62)(46,61)(47,60)(48,59)(49,58)(50,57)(51,56)(52,66)(53,65)(54,64)(55,63)(67,84)(68,83)(69,82)(70,81)(71,80)(72,79)(73,78)(74,88)(75,87)(76,86)(77,85)>;

G:=Group( (1,54,32,87,21,65,43,76)(2,55,33,88,22,66,44,77)(3,45,23,78,12,56,34,67)(4,46,24,79,13,57,35,68)(5,47,25,80,14,58,36,69)(6,48,26,81,15,59,37,70)(7,49,27,82,16,60,38,71)(8,50,28,83,17,61,39,72)(9,51,29,84,18,62,40,73)(10,52,30,85,19,63,41,74)(11,53,31,86,20,64,42,75), (23,34)(24,35)(25,36)(26,37)(27,38)(28,39)(29,40)(30,41)(31,42)(32,43)(33,44)(45,67)(46,68)(47,69)(48,70)(49,71)(50,72)(51,73)(52,74)(53,75)(54,76)(55,77)(56,78)(57,79)(58,80)(59,81)(60,82)(61,83)(62,84)(63,85)(64,86)(65,87)(66,88), (1,2,3,4,5,6,7,8,9,10,11)(12,13,14,15,16,17,18,19,20,21,22)(23,24,25,26,27,28,29,30,31,32,33)(34,35,36,37,38,39,40,41,42,43,44)(45,46,47,48,49,50,51,52,53,54,55)(56,57,58,59,60,61,62,63,64,65,66)(67,68,69,70,71,72,73,74,75,76,77)(78,79,80,81,82,83,84,85,86,87,88), (1,11)(2,10)(3,9)(4,8)(5,7)(12,18)(13,17)(14,16)(19,22)(20,21)(23,29)(24,28)(25,27)(30,33)(31,32)(34,40)(35,39)(36,38)(41,44)(42,43)(45,62)(46,61)(47,60)(48,59)(49,58)(50,57)(51,56)(52,66)(53,65)(54,64)(55,63)(67,84)(68,83)(69,82)(70,81)(71,80)(72,79)(73,78)(74,88)(75,87)(76,86)(77,85) );

G=PermutationGroup([[(1,54,32,87,21,65,43,76),(2,55,33,88,22,66,44,77),(3,45,23,78,12,56,34,67),(4,46,24,79,13,57,35,68),(5,47,25,80,14,58,36,69),(6,48,26,81,15,59,37,70),(7,49,27,82,16,60,38,71),(8,50,28,83,17,61,39,72),(9,51,29,84,18,62,40,73),(10,52,30,85,19,63,41,74),(11,53,31,86,20,64,42,75)], [(23,34),(24,35),(25,36),(26,37),(27,38),(28,39),(29,40),(30,41),(31,42),(32,43),(33,44),(45,67),(46,68),(47,69),(48,70),(49,71),(50,72),(51,73),(52,74),(53,75),(54,76),(55,77),(56,78),(57,79),(58,80),(59,81),(60,82),(61,83),(62,84),(63,85),(64,86),(65,87),(66,88)], [(1,2,3,4,5,6,7,8,9,10,11),(12,13,14,15,16,17,18,19,20,21,22),(23,24,25,26,27,28,29,30,31,32,33),(34,35,36,37,38,39,40,41,42,43,44),(45,46,47,48,49,50,51,52,53,54,55),(56,57,58,59,60,61,62,63,64,65,66),(67,68,69,70,71,72,73,74,75,76,77),(78,79,80,81,82,83,84,85,86,87,88)], [(1,11),(2,10),(3,9),(4,8),(5,7),(12,18),(13,17),(14,16),(19,22),(20,21),(23,29),(24,28),(25,27),(30,33),(31,32),(34,40),(35,39),(36,38),(41,44),(42,43),(45,62),(46,61),(47,60),(48,59),(49,58),(50,57),(51,56),(52,66),(53,65),(54,64),(55,63),(67,84),(68,83),(69,82),(70,81),(71,80),(72,79),(73,78),(74,88),(75,87),(76,86),(77,85)]])

46 conjugacy classes

class 1 2A2B2C2D2E4A4B4C8A8B11A···11E22A···22E22F···22O44A···44E88A···88J
order1222224448811···1122···2222···2244···4488···88
size11442244222444442···22···28···84···44···4

46 irreducible representations

dim1111111122222444
type+++++++++++++++
imageC1C2C2C2C2C2C2C2D4D4D11D22D22C8⋊C22D4×D11D4⋊D22
kernelD4⋊D22C88⋊C2C8⋊D11D4⋊D11D4.D11C11×D8D4×D11D42D11Dic11D22D8C8D4C11C2C1
# reps111111111155101510

Matrix representation of D4⋊D22 in GL4(𝔽89) generated by

001535
006759
14461812
55827771
,
1000
0100
6757880
170088
,
11100
237500
0001
008886
,
698100
612000
0001
0010
G:=sub<GL(4,GF(89))| [0,0,14,55,0,0,46,82,15,67,18,77,35,59,12,71],[1,0,67,1,0,1,57,70,0,0,88,0,0,0,0,88],[11,23,0,0,1,75,0,0,0,0,0,88,0,0,1,86],[69,61,0,0,81,20,0,0,0,0,0,1,0,0,1,0] >;

D4⋊D22 in GAP, Magma, Sage, TeX

D_4\rtimes D_{22}
% in TeX

G:=Group("D4:D22");
// GroupNames label

G:=SmallGroup(352,106);
// by ID

G=gap.SmallGroup(352,106);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-2,-11,362,116,297,159,69,11525]);
// Polycyclic

G:=Group<a,b,c,d|a^8=b^2=c^11=d^2=1,b*a*b=a^-1,a*c=c*a,d*a*d=a^5,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽