Copied to
clipboard

G = D88:C2order 352 = 25·11

6th semidirect product of D88 and C2 acting faithfully

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C8:3D22, D88:6C2, Q8:2D22, C88:3C22, D22.7D4, D4.3D22, SD16:1D11, D44:2C22, C44.5C23, Dic11.9D4, D4:D11:3C2, (D4xD11):3C2, C11:C8:2C22, Q8:D11:2C2, C88:C2:1C2, C11:3(C8:C22), C22.31(C2xD4), C2.19(D4xD11), D44:C2:1C2, (C11xSD16):1C2, (Q8xC11):2C22, C4.5(C22xD11), (C4xD11).2C22, (D4xC11).3C22, SmallGroup(352,109)

Series: Derived Chief Lower central Upper central

C1C44 — D88:C2
C1C11C22C44C4xD11D4xD11 — D88:C2
C11C22C44 — D88:C2
C1C2C4SD16

Generators and relations for D88:C2
 G = < a,b,c | a88=b2=c2=1, bab=a-1, cac=a67, bc=cb >

Subgroups: 546 in 68 conjugacy classes, 27 normal (all characteristic)
C1, C2, C2, C4, C4, C22, C8, C8, C2xC4, D4, D4, Q8, C23, C11, M4(2), D8, SD16, SD16, C2xD4, C4oD4, D11, C22, C22, C8:C22, Dic11, C44, C44, D22, D22, C2xC22, C11:C8, C88, C4xD11, C4xD11, D44, D44, C11:D4, D4xC11, Q8xC11, C22xD11, C88:C2, D88, D4:D11, Q8:D11, C11xSD16, D4xD11, D44:C2, D88:C2
Quotients: C1, C2, C22, D4, C23, C2xD4, D11, C8:C22, D22, C22xD11, D4xD11, D88:C2

Smallest permutation representation of D88:C2
On 88 points
Generators in S88
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88)
(1 77)(2 76)(3 75)(4 74)(5 73)(6 72)(7 71)(8 70)(9 69)(10 68)(11 67)(12 66)(13 65)(14 64)(15 63)(16 62)(17 61)(18 60)(19 59)(20 58)(21 57)(22 56)(23 55)(24 54)(25 53)(26 52)(27 51)(28 50)(29 49)(30 48)(31 47)(32 46)(33 45)(34 44)(35 43)(36 42)(37 41)(38 40)(78 88)(79 87)(80 86)(81 85)(82 84)
(2 68)(3 47)(4 26)(6 72)(7 51)(8 30)(10 76)(11 55)(12 34)(14 80)(15 59)(16 38)(18 84)(19 63)(20 42)(22 88)(23 67)(24 46)(27 71)(28 50)(31 75)(32 54)(35 79)(36 58)(39 83)(40 62)(43 87)(44 66)(48 70)(52 74)(56 78)(60 82)(64 86)

G:=sub<Sym(88)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88), (1,77)(2,76)(3,75)(4,74)(5,73)(6,72)(7,71)(8,70)(9,69)(10,68)(11,67)(12,66)(13,65)(14,64)(15,63)(16,62)(17,61)(18,60)(19,59)(20,58)(21,57)(22,56)(23,55)(24,54)(25,53)(26,52)(27,51)(28,50)(29,49)(30,48)(31,47)(32,46)(33,45)(34,44)(35,43)(36,42)(37,41)(38,40)(78,88)(79,87)(80,86)(81,85)(82,84), (2,68)(3,47)(4,26)(6,72)(7,51)(8,30)(10,76)(11,55)(12,34)(14,80)(15,59)(16,38)(18,84)(19,63)(20,42)(22,88)(23,67)(24,46)(27,71)(28,50)(31,75)(32,54)(35,79)(36,58)(39,83)(40,62)(43,87)(44,66)(48,70)(52,74)(56,78)(60,82)(64,86)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88), (1,77)(2,76)(3,75)(4,74)(5,73)(6,72)(7,71)(8,70)(9,69)(10,68)(11,67)(12,66)(13,65)(14,64)(15,63)(16,62)(17,61)(18,60)(19,59)(20,58)(21,57)(22,56)(23,55)(24,54)(25,53)(26,52)(27,51)(28,50)(29,49)(30,48)(31,47)(32,46)(33,45)(34,44)(35,43)(36,42)(37,41)(38,40)(78,88)(79,87)(80,86)(81,85)(82,84), (2,68)(3,47)(4,26)(6,72)(7,51)(8,30)(10,76)(11,55)(12,34)(14,80)(15,59)(16,38)(18,84)(19,63)(20,42)(22,88)(23,67)(24,46)(27,71)(28,50)(31,75)(32,54)(35,79)(36,58)(39,83)(40,62)(43,87)(44,66)(48,70)(52,74)(56,78)(60,82)(64,86) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88)], [(1,77),(2,76),(3,75),(4,74),(5,73),(6,72),(7,71),(8,70),(9,69),(10,68),(11,67),(12,66),(13,65),(14,64),(15,63),(16,62),(17,61),(18,60),(19,59),(20,58),(21,57),(22,56),(23,55),(24,54),(25,53),(26,52),(27,51),(28,50),(29,49),(30,48),(31,47),(32,46),(33,45),(34,44),(35,43),(36,42),(37,41),(38,40),(78,88),(79,87),(80,86),(81,85),(82,84)], [(2,68),(3,47),(4,26),(6,72),(7,51),(8,30),(10,76),(11,55),(12,34),(14,80),(15,59),(16,38),(18,84),(19,63),(20,42),(22,88),(23,67),(24,46),(27,71),(28,50),(31,75),(32,54),(35,79),(36,58),(39,83),(40,62),(43,87),(44,66),(48,70),(52,74),(56,78),(60,82),(64,86)]])

46 conjugacy classes

class 1 2A2B2C2D2E4A4B4C8A8B11A···11E22A···22E22F···22J44A···44E44F···44J88A···88J
order1222224448811···1122···2222···2244···4444···4488···88
size11422444424224442···22···28···84···48···84···4

46 irreducible representations

dim11111111222222444
type+++++++++++++++++
imageC1C2C2C2C2C2C2C2D4D4D11D22D22D22C8:C22D4xD11D88:C2
kernelD88:C2C88:C2D88D4:D11Q8:D11C11xSD16D4xD11D44:C2Dic11D22SD16C8D4Q8C11C2C1
# reps111111111155551510

Matrix representation of D88:C2 in GL4(F89) generated by

007976
007788
81137442
74724770
,
53400
158400
3244213
21363487
,
1000
0100
1967880
220088
G:=sub<GL(4,GF(89))| [0,0,81,74,0,0,13,72,79,77,74,47,76,88,42,70],[5,15,32,21,34,84,44,36,0,0,2,34,0,0,13,87],[1,0,19,22,0,1,67,0,0,0,88,0,0,0,0,88] >;

D88:C2 in GAP, Magma, Sage, TeX

D_{88}\rtimes C_2
% in TeX

G:=Group("D88:C2");
// GroupNames label

G:=SmallGroup(352,109);
// by ID

G=gap.SmallGroup(352,109);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-2,-11,362,116,86,297,159,69,11525]);
// Polycyclic

G:=Group<a,b,c|a^88=b^2=c^2=1,b*a*b=a^-1,c*a*c=a^67,b*c=c*b>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<