extension | φ:Q→Aut N | d | ρ | Label | ID |
(C2×C22).1D4 = D44⋊4C4 | φ: D4/C2 → C22 ⊆ Aut C2×C22 | 88 | 4 | (C2xC22).1D4 | 352,31 |
(C2×C22).2D4 = C23⋊Dic11 | φ: D4/C2 → C22 ⊆ Aut C2×C22 | 88 | 4 | (C2xC22).2D4 | 352,40 |
(C2×C22).3D4 = C44.56D4 | φ: D4/C2 → C22 ⊆ Aut C2×C22 | 88 | 4 | (C2xC22).3D4 | 352,43 |
(C2×C22).4D4 = C22.D44 | φ: D4/C2 → C22 ⊆ Aut C2×C22 | 176 | | (C2xC22).4D4 | 352,81 |
(C2×C22).5D4 = C8⋊D22 | φ: D4/C2 → C22 ⊆ Aut C2×C22 | 88 | 4+ | (C2xC22).5D4 | 352,103 |
(C2×C22).6D4 = C8.D22 | φ: D4/C2 → C22 ⊆ Aut C2×C22 | 176 | 4- | (C2xC22).6D4 | 352,104 |
(C2×C22).7D4 = C23.18D22 | φ: D4/C2 → C22 ⊆ Aut C2×C22 | 176 | | (C2xC22).7D4 | 352,130 |
(C2×C22).8D4 = Q8⋊D22 | φ: D4/C2 → C22 ⊆ Aut C2×C22 | 88 | 4+ | (C2xC22).8D4 | 352,144 |
(C2×C22).9D4 = D4.8D22 | φ: D4/C2 → C22 ⊆ Aut C2×C22 | 176 | 4 | (C2xC22).9D4 | 352,145 |
(C2×C22).10D4 = D4.9D22 | φ: D4/C2 → C22 ⊆ Aut C2×C22 | 176 | 4- | (C2xC22).10D4 | 352,146 |
(C2×C22).11D4 = C11×C4○D8 | φ: D4/C4 → C2 ⊆ Aut C2×C22 | 176 | 2 | (C2xC22).11D4 | 352,170 |
(C2×C22).12D4 = C44.44D4 | φ: D4/C4 → C2 ⊆ Aut C2×C22 | 352 | | (C2xC22).12D4 | 352,22 |
(C2×C22).13D4 = C44.4Q8 | φ: D4/C4 → C2 ⊆ Aut C2×C22 | 352 | | (C2xC22).13D4 | 352,23 |
(C2×C22).14D4 = C44.5Q8 | φ: D4/C4 → C2 ⊆ Aut C2×C22 | 352 | | (C2xC22).14D4 | 352,24 |
(C2×C22).15D4 = C2.D88 | φ: D4/C4 → C2 ⊆ Aut C2×C22 | 176 | | (C2xC22).15D4 | 352,27 |
(C2×C22).16D4 = C2×C8⋊D11 | φ: D4/C4 → C2 ⊆ Aut C2×C22 | 176 | | (C2xC22).16D4 | 352,97 |
(C2×C22).17D4 = C2×D88 | φ: D4/C4 → C2 ⊆ Aut C2×C22 | 176 | | (C2xC22).17D4 | 352,98 |
(C2×C22).18D4 = D88⋊7C2 | φ: D4/C4 → C2 ⊆ Aut C2×C22 | 176 | 2 | (C2xC22).18D4 | 352,99 |
(C2×C22).19D4 = C2×Dic44 | φ: D4/C4 → C2 ⊆ Aut C2×C22 | 352 | | (C2xC22).19D4 | 352,100 |
(C2×C22).20D4 = C2×C44⋊C4 | φ: D4/C4 → C2 ⊆ Aut C2×C22 | 352 | | (C2xC22).20D4 | 352,120 |
(C2×C22).21D4 = C11×C23⋊C4 | φ: D4/C22 → C2 ⊆ Aut C2×C22 | 88 | 4 | (C2xC22).21D4 | 352,48 |
(C2×C22).22D4 = C11×C4≀C2 | φ: D4/C22 → C2 ⊆ Aut C2×C22 | 88 | 2 | (C2xC22).22D4 | 352,53 |
(C2×C22).23D4 = C11×C22.D4 | φ: D4/C22 → C2 ⊆ Aut C2×C22 | 176 | | (C2xC22).23D4 | 352,158 |
(C2×C22).24D4 = C11×C8⋊C22 | φ: D4/C22 → C2 ⊆ Aut C2×C22 | 88 | 4 | (C2xC22).24D4 | 352,171 |
(C2×C22).25D4 = C11×C8.C22 | φ: D4/C22 → C2 ⊆ Aut C2×C22 | 176 | 4 | (C2xC22).25D4 | 352,172 |
(C2×C22).26D4 = D44⋊1C4 | φ: D4/C22 → C2 ⊆ Aut C2×C22 | 88 | 2 | (C2xC22).26D4 | 352,11 |
(C2×C22).27D4 = C22.2D44 | φ: D4/C22 → C2 ⊆ Aut C2×C22 | 88 | 4 | (C2xC22).27D4 | 352,12 |
(C2×C22).28D4 = C44.Q8 | φ: D4/C22 → C2 ⊆ Aut C2×C22 | 352 | | (C2xC22).28D4 | 352,13 |
(C2×C22).29D4 = C4.Dic22 | φ: D4/C22 → C2 ⊆ Aut C2×C22 | 352 | | (C2xC22).29D4 | 352,14 |
(C2×C22).30D4 = C22.D8 | φ: D4/C22 → C2 ⊆ Aut C2×C22 | 176 | | (C2xC22).30D4 | 352,15 |
(C2×C22).31D4 = C22.Q16 | φ: D4/C22 → C2 ⊆ Aut C2×C22 | 352 | | (C2xC22).31D4 | 352,16 |
(C2×C22).32D4 = C22.C42 | φ: D4/C22 → C2 ⊆ Aut C2×C22 | 352 | | (C2xC22).32D4 | 352,37 |
(C2×C22).33D4 = D4⋊Dic11 | φ: D4/C22 → C2 ⊆ Aut C2×C22 | 176 | | (C2xC22).33D4 | 352,38 |
(C2×C22).34D4 = Q8⋊Dic11 | φ: D4/C22 → C2 ⊆ Aut C2×C22 | 352 | | (C2xC22).34D4 | 352,41 |
(C2×C22).35D4 = C2×Dic11⋊C4 | φ: D4/C22 → C2 ⊆ Aut C2×C22 | 352 | | (C2xC22).35D4 | 352,118 |
(C2×C22).36D4 = C2×D22⋊C4 | φ: D4/C22 → C2 ⊆ Aut C2×C22 | 176 | | (C2xC22).36D4 | 352,122 |
(C2×C22).37D4 = C23.23D22 | φ: D4/C22 → C2 ⊆ Aut C2×C22 | 176 | | (C2xC22).37D4 | 352,124 |
(C2×C22).38D4 = C2×D4⋊D11 | φ: D4/C22 → C2 ⊆ Aut C2×C22 | 176 | | (C2xC22).38D4 | 352,126 |
(C2×C22).39D4 = D44⋊6C22 | φ: D4/C22 → C2 ⊆ Aut C2×C22 | 88 | 4 | (C2xC22).39D4 | 352,127 |
(C2×C22).40D4 = C2×D4.D11 | φ: D4/C22 → C2 ⊆ Aut C2×C22 | 176 | | (C2xC22).40D4 | 352,128 |
(C2×C22).41D4 = C2×Q8⋊D11 | φ: D4/C22 → C2 ⊆ Aut C2×C22 | 176 | | (C2xC22).41D4 | 352,136 |
(C2×C22).42D4 = C44.C23 | φ: D4/C22 → C2 ⊆ Aut C2×C22 | 176 | 4 | (C2xC22).42D4 | 352,137 |
(C2×C22).43D4 = C2×C11⋊Q16 | φ: D4/C22 → C2 ⊆ Aut C2×C22 | 352 | | (C2xC22).43D4 | 352,138 |
(C2×C22).44D4 = C2×C23.D11 | φ: D4/C22 → C2 ⊆ Aut C2×C22 | 176 | | (C2xC22).44D4 | 352,147 |
(C2×C22).45D4 = C11×C2.C42 | central extension (φ=1) | 352 | | (C2xC22).45D4 | 352,44 |
(C2×C22).46D4 = C11×D4⋊C4 | central extension (φ=1) | 176 | | (C2xC22).46D4 | 352,51 |
(C2×C22).47D4 = C11×Q8⋊C4 | central extension (φ=1) | 352 | | (C2xC22).47D4 | 352,52 |
(C2×C22).48D4 = C11×C4.Q8 | central extension (φ=1) | 352 | | (C2xC22).48D4 | 352,55 |
(C2×C22).49D4 = C11×C2.D8 | central extension (φ=1) | 352 | | (C2xC22).49D4 | 352,56 |
(C2×C22).50D4 = C22⋊C4×C22 | central extension (φ=1) | 176 | | (C2xC22).50D4 | 352,150 |
(C2×C22).51D4 = C4⋊C4×C22 | central extension (φ=1) | 352 | | (C2xC22).51D4 | 352,151 |
(C2×C22).52D4 = D8×C22 | central extension (φ=1) | 176 | | (C2xC22).52D4 | 352,167 |
(C2×C22).53D4 = SD16×C22 | central extension (φ=1) | 176 | | (C2xC22).53D4 | 352,168 |
(C2×C22).54D4 = Q16×C22 | central extension (φ=1) | 352 | | (C2xC22).54D4 | 352,169 |