Copied to
clipboard

G = C2×C7⋊He3order 378 = 2·33·7

Direct product of C2 and C7⋊He3

direct product, metabelian, supersoluble, monomial, 3-hyperelementary

Aliases: C2×C7⋊He3, C14⋊He3, C42.6C32, C72(C2×He3), (C3×C42)⋊2C3, (C3×C21)⋊13C6, C21.12(C3×C6), (C6×C7⋊C3)⋊C3, (C3×C6)⋊(C7⋊C3), (C3×C7⋊C3)⋊2C6, C6.6(C3×C7⋊C3), C3.6(C6×C7⋊C3), C322(C2×C7⋊C3), SmallGroup(378,28)

Series: Derived Chief Lower central Upper central

C1C21 — C2×C7⋊He3
C1C7C21C3×C21C7⋊He3 — C2×C7⋊He3
C7C21 — C2×C7⋊He3
C1C6C3×C6

Generators and relations for C2×C7⋊He3
 G = < a,b,c,d,e | a2=b7=c3=d3=e3=1, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, bd=db, ebe-1=b4, cd=dc, ece-1=cd-1, de=ed >

3C3
21C3
21C3
21C3
3C6
21C6
21C6
21C6
7C32
7C32
7C32
3C21
3C7⋊C3
3C7⋊C3
3C7⋊C3
7C3×C6
7C3×C6
7C3×C6
7He3
3C42
3C2×C7⋊C3
3C2×C7⋊C3
3C2×C7⋊C3
7C2×He3

Smallest permutation representation of C2×C7⋊He3
On 126 points
Generators in S126
(1 64)(2 65)(3 66)(4 67)(5 68)(6 69)(7 70)(8 71)(9 72)(10 73)(11 74)(12 75)(13 76)(14 77)(15 78)(16 79)(17 80)(18 81)(19 82)(20 83)(21 84)(22 85)(23 86)(24 87)(25 88)(26 89)(27 90)(28 91)(29 92)(30 93)(31 94)(32 95)(33 96)(34 97)(35 98)(36 99)(37 100)(38 101)(39 102)(40 103)(41 104)(42 105)(43 106)(44 107)(45 108)(46 109)(47 110)(48 111)(49 112)(50 113)(51 114)(52 115)(53 116)(54 117)(55 118)(56 119)(57 120)(58 121)(59 122)(60 123)(61 124)(62 125)(63 126)
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)(29 30 31 32 33 34 35)(36 37 38 39 40 41 42)(43 44 45 46 47 48 49)(50 51 52 53 54 55 56)(57 58 59 60 61 62 63)(64 65 66 67 68 69 70)(71 72 73 74 75 76 77)(78 79 80 81 82 83 84)(85 86 87 88 89 90 91)(92 93 94 95 96 97 98)(99 100 101 102 103 104 105)(106 107 108 109 110 111 112)(113 114 115 116 117 118 119)(120 121 122 123 124 125 126)
(1 43 22)(2 44 23)(3 45 24)(4 46 25)(5 47 26)(6 48 27)(7 49 28)(8 50 29)(9 51 30)(10 52 31)(11 53 32)(12 54 33)(13 55 34)(14 56 35)(15 57 36)(16 58 37)(17 59 38)(18 60 39)(19 61 40)(20 62 41)(21 63 42)(64 106 85)(65 107 86)(66 108 87)(67 109 88)(68 110 89)(69 111 90)(70 112 91)(71 113 92)(72 114 93)(73 115 94)(74 116 95)(75 117 96)(76 118 97)(77 119 98)(78 120 99)(79 121 100)(80 122 101)(81 123 102)(82 124 103)(83 125 104)(84 126 105)
(1 15 8)(2 16 9)(3 17 10)(4 18 11)(5 19 12)(6 20 13)(7 21 14)(22 36 29)(23 37 30)(24 38 31)(25 39 32)(26 40 33)(27 41 34)(28 42 35)(43 57 50)(44 58 51)(45 59 52)(46 60 53)(47 61 54)(48 62 55)(49 63 56)(64 78 71)(65 79 72)(66 80 73)(67 81 74)(68 82 75)(69 83 76)(70 84 77)(85 99 92)(86 100 93)(87 101 94)(88 102 95)(89 103 96)(90 104 97)(91 105 98)(106 120 113)(107 121 114)(108 122 115)(109 123 116)(110 124 117)(111 125 118)(112 126 119)
(2 3 5)(4 7 6)(9 10 12)(11 14 13)(16 17 19)(18 21 20)(22 29 36)(23 31 40)(24 33 37)(25 35 41)(26 30 38)(27 32 42)(28 34 39)(43 57 50)(44 59 54)(45 61 51)(46 63 55)(47 58 52)(48 60 56)(49 62 53)(65 66 68)(67 70 69)(72 73 75)(74 77 76)(79 80 82)(81 84 83)(85 92 99)(86 94 103)(87 96 100)(88 98 104)(89 93 101)(90 95 105)(91 97 102)(106 120 113)(107 122 117)(108 124 114)(109 126 118)(110 121 115)(111 123 119)(112 125 116)

G:=sub<Sym(126)| (1,64)(2,65)(3,66)(4,67)(5,68)(6,69)(7,70)(8,71)(9,72)(10,73)(11,74)(12,75)(13,76)(14,77)(15,78)(16,79)(17,80)(18,81)(19,82)(20,83)(21,84)(22,85)(23,86)(24,87)(25,88)(26,89)(27,90)(28,91)(29,92)(30,93)(31,94)(32,95)(33,96)(34,97)(35,98)(36,99)(37,100)(38,101)(39,102)(40,103)(41,104)(42,105)(43,106)(44,107)(45,108)(46,109)(47,110)(48,111)(49,112)(50,113)(51,114)(52,115)(53,116)(54,117)(55,118)(56,119)(57,120)(58,121)(59,122)(60,123)(61,124)(62,125)(63,126), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56)(57,58,59,60,61,62,63)(64,65,66,67,68,69,70)(71,72,73,74,75,76,77)(78,79,80,81,82,83,84)(85,86,87,88,89,90,91)(92,93,94,95,96,97,98)(99,100,101,102,103,104,105)(106,107,108,109,110,111,112)(113,114,115,116,117,118,119)(120,121,122,123,124,125,126), (1,43,22)(2,44,23)(3,45,24)(4,46,25)(5,47,26)(6,48,27)(7,49,28)(8,50,29)(9,51,30)(10,52,31)(11,53,32)(12,54,33)(13,55,34)(14,56,35)(15,57,36)(16,58,37)(17,59,38)(18,60,39)(19,61,40)(20,62,41)(21,63,42)(64,106,85)(65,107,86)(66,108,87)(67,109,88)(68,110,89)(69,111,90)(70,112,91)(71,113,92)(72,114,93)(73,115,94)(74,116,95)(75,117,96)(76,118,97)(77,119,98)(78,120,99)(79,121,100)(80,122,101)(81,123,102)(82,124,103)(83,125,104)(84,126,105), (1,15,8)(2,16,9)(3,17,10)(4,18,11)(5,19,12)(6,20,13)(7,21,14)(22,36,29)(23,37,30)(24,38,31)(25,39,32)(26,40,33)(27,41,34)(28,42,35)(43,57,50)(44,58,51)(45,59,52)(46,60,53)(47,61,54)(48,62,55)(49,63,56)(64,78,71)(65,79,72)(66,80,73)(67,81,74)(68,82,75)(69,83,76)(70,84,77)(85,99,92)(86,100,93)(87,101,94)(88,102,95)(89,103,96)(90,104,97)(91,105,98)(106,120,113)(107,121,114)(108,122,115)(109,123,116)(110,124,117)(111,125,118)(112,126,119), (2,3,5)(4,7,6)(9,10,12)(11,14,13)(16,17,19)(18,21,20)(22,29,36)(23,31,40)(24,33,37)(25,35,41)(26,30,38)(27,32,42)(28,34,39)(43,57,50)(44,59,54)(45,61,51)(46,63,55)(47,58,52)(48,60,56)(49,62,53)(65,66,68)(67,70,69)(72,73,75)(74,77,76)(79,80,82)(81,84,83)(85,92,99)(86,94,103)(87,96,100)(88,98,104)(89,93,101)(90,95,105)(91,97,102)(106,120,113)(107,122,117)(108,124,114)(109,126,118)(110,121,115)(111,123,119)(112,125,116)>;

G:=Group( (1,64)(2,65)(3,66)(4,67)(5,68)(6,69)(7,70)(8,71)(9,72)(10,73)(11,74)(12,75)(13,76)(14,77)(15,78)(16,79)(17,80)(18,81)(19,82)(20,83)(21,84)(22,85)(23,86)(24,87)(25,88)(26,89)(27,90)(28,91)(29,92)(30,93)(31,94)(32,95)(33,96)(34,97)(35,98)(36,99)(37,100)(38,101)(39,102)(40,103)(41,104)(42,105)(43,106)(44,107)(45,108)(46,109)(47,110)(48,111)(49,112)(50,113)(51,114)(52,115)(53,116)(54,117)(55,118)(56,119)(57,120)(58,121)(59,122)(60,123)(61,124)(62,125)(63,126), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56)(57,58,59,60,61,62,63)(64,65,66,67,68,69,70)(71,72,73,74,75,76,77)(78,79,80,81,82,83,84)(85,86,87,88,89,90,91)(92,93,94,95,96,97,98)(99,100,101,102,103,104,105)(106,107,108,109,110,111,112)(113,114,115,116,117,118,119)(120,121,122,123,124,125,126), (1,43,22)(2,44,23)(3,45,24)(4,46,25)(5,47,26)(6,48,27)(7,49,28)(8,50,29)(9,51,30)(10,52,31)(11,53,32)(12,54,33)(13,55,34)(14,56,35)(15,57,36)(16,58,37)(17,59,38)(18,60,39)(19,61,40)(20,62,41)(21,63,42)(64,106,85)(65,107,86)(66,108,87)(67,109,88)(68,110,89)(69,111,90)(70,112,91)(71,113,92)(72,114,93)(73,115,94)(74,116,95)(75,117,96)(76,118,97)(77,119,98)(78,120,99)(79,121,100)(80,122,101)(81,123,102)(82,124,103)(83,125,104)(84,126,105), (1,15,8)(2,16,9)(3,17,10)(4,18,11)(5,19,12)(6,20,13)(7,21,14)(22,36,29)(23,37,30)(24,38,31)(25,39,32)(26,40,33)(27,41,34)(28,42,35)(43,57,50)(44,58,51)(45,59,52)(46,60,53)(47,61,54)(48,62,55)(49,63,56)(64,78,71)(65,79,72)(66,80,73)(67,81,74)(68,82,75)(69,83,76)(70,84,77)(85,99,92)(86,100,93)(87,101,94)(88,102,95)(89,103,96)(90,104,97)(91,105,98)(106,120,113)(107,121,114)(108,122,115)(109,123,116)(110,124,117)(111,125,118)(112,126,119), (2,3,5)(4,7,6)(9,10,12)(11,14,13)(16,17,19)(18,21,20)(22,29,36)(23,31,40)(24,33,37)(25,35,41)(26,30,38)(27,32,42)(28,34,39)(43,57,50)(44,59,54)(45,61,51)(46,63,55)(47,58,52)(48,60,56)(49,62,53)(65,66,68)(67,70,69)(72,73,75)(74,77,76)(79,80,82)(81,84,83)(85,92,99)(86,94,103)(87,96,100)(88,98,104)(89,93,101)(90,95,105)(91,97,102)(106,120,113)(107,122,117)(108,124,114)(109,126,118)(110,121,115)(111,123,119)(112,125,116) );

G=PermutationGroup([[(1,64),(2,65),(3,66),(4,67),(5,68),(6,69),(7,70),(8,71),(9,72),(10,73),(11,74),(12,75),(13,76),(14,77),(15,78),(16,79),(17,80),(18,81),(19,82),(20,83),(21,84),(22,85),(23,86),(24,87),(25,88),(26,89),(27,90),(28,91),(29,92),(30,93),(31,94),(32,95),(33,96),(34,97),(35,98),(36,99),(37,100),(38,101),(39,102),(40,103),(41,104),(42,105),(43,106),(44,107),(45,108),(46,109),(47,110),(48,111),(49,112),(50,113),(51,114),(52,115),(53,116),(54,117),(55,118),(56,119),(57,120),(58,121),(59,122),(60,123),(61,124),(62,125),(63,126)], [(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28),(29,30,31,32,33,34,35),(36,37,38,39,40,41,42),(43,44,45,46,47,48,49),(50,51,52,53,54,55,56),(57,58,59,60,61,62,63),(64,65,66,67,68,69,70),(71,72,73,74,75,76,77),(78,79,80,81,82,83,84),(85,86,87,88,89,90,91),(92,93,94,95,96,97,98),(99,100,101,102,103,104,105),(106,107,108,109,110,111,112),(113,114,115,116,117,118,119),(120,121,122,123,124,125,126)], [(1,43,22),(2,44,23),(3,45,24),(4,46,25),(5,47,26),(6,48,27),(7,49,28),(8,50,29),(9,51,30),(10,52,31),(11,53,32),(12,54,33),(13,55,34),(14,56,35),(15,57,36),(16,58,37),(17,59,38),(18,60,39),(19,61,40),(20,62,41),(21,63,42),(64,106,85),(65,107,86),(66,108,87),(67,109,88),(68,110,89),(69,111,90),(70,112,91),(71,113,92),(72,114,93),(73,115,94),(74,116,95),(75,117,96),(76,118,97),(77,119,98),(78,120,99),(79,121,100),(80,122,101),(81,123,102),(82,124,103),(83,125,104),(84,126,105)], [(1,15,8),(2,16,9),(3,17,10),(4,18,11),(5,19,12),(6,20,13),(7,21,14),(22,36,29),(23,37,30),(24,38,31),(25,39,32),(26,40,33),(27,41,34),(28,42,35),(43,57,50),(44,58,51),(45,59,52),(46,60,53),(47,61,54),(48,62,55),(49,63,56),(64,78,71),(65,79,72),(66,80,73),(67,81,74),(68,82,75),(69,83,76),(70,84,77),(85,99,92),(86,100,93),(87,101,94),(88,102,95),(89,103,96),(90,104,97),(91,105,98),(106,120,113),(107,121,114),(108,122,115),(109,123,116),(110,124,117),(111,125,118),(112,126,119)], [(2,3,5),(4,7,6),(9,10,12),(11,14,13),(16,17,19),(18,21,20),(22,29,36),(23,31,40),(24,33,37),(25,35,41),(26,30,38),(27,32,42),(28,34,39),(43,57,50),(44,59,54),(45,61,51),(46,63,55),(47,58,52),(48,60,56),(49,62,53),(65,66,68),(67,70,69),(72,73,75),(74,77,76),(79,80,82),(81,84,83),(85,92,99),(86,94,103),(87,96,100),(88,98,104),(89,93,101),(90,95,105),(91,97,102),(106,120,113),(107,122,117),(108,124,114),(109,126,118),(110,121,115),(111,123,119),(112,125,116)]])

58 conjugacy classes

class 1  2 3A3B3C3D3E···3J6A6B6C6D6E···6J7A7B14A14B21A···21P42A···42P
order1233333···366666···677141421···2142···42
size11113321···21113321···2133333···33···3

58 irreducible representations

dim11111133333333
type++
imageC1C2C3C3C6C6C7⋊C3He3C2×C7⋊C3C2×He3C3×C7⋊C3C6×C7⋊C3C7⋊He3C2×C7⋊He3
kernelC2×C7⋊He3C7⋊He3C6×C7⋊C3C3×C42C3×C7⋊C3C3×C21C3×C6C14C32C7C6C3C2C1
# reps1162622222441212

Matrix representation of C2×C7⋊He3 in GL3(𝔽43) generated by

4200
0420
0042
,
18191
100
010
,
413915
152912
121416
,
3600
0360
0036
,
100
244242
010
G:=sub<GL(3,GF(43))| [42,0,0,0,42,0,0,0,42],[18,1,0,19,0,1,1,0,0],[41,15,12,39,29,14,15,12,16],[36,0,0,0,36,0,0,0,36],[1,24,0,0,42,1,0,42,0] >;

C2×C7⋊He3 in GAP, Magma, Sage, TeX

C_2\times C_7\rtimes {\rm He}_3
% in TeX

G:=Group("C2xC7:He3");
// GroupNames label

G:=SmallGroup(378,28);
// by ID

G=gap.SmallGroup(378,28);
# by ID

G:=PCGroup([5,-2,-3,-3,-3,-7,187,1359]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^7=c^3=d^3=e^3=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,e*b*e^-1=b^4,c*d=d*c,e*c*e^-1=c*d^-1,d*e=e*d>;
// generators/relations

Export

Subgroup lattice of C2×C7⋊He3 in TeX

׿
×
𝔽