extension | φ:Q→Aut N | d | ρ | Label | ID |
C21.1(C3×C6) = C9×F7 | φ: C3×C6/C3 → C6 ⊆ Aut C21 | 63 | 6 | C21.1(C3xC6) | 378,7 |
C21.2(C3×C6) = C9⋊3F7 | φ: C3×C6/C3 → C6 ⊆ Aut C21 | 63 | 6 | C21.2(C3xC6) | 378,8 |
C21.3(C3×C6) = C9⋊4F7 | φ: C3×C6/C3 → C6 ⊆ Aut C21 | 63 | 6 | C21.3(C3xC6) | 378,9 |
C21.4(C3×C6) = C3×C7⋊C18 | φ: C3×C6/C3 → C6 ⊆ Aut C21 | 189 | | C21.4(C3xC6) | 378,10 |
C21.5(C3×C6) = C32.F7 | φ: C3×C6/C3 → C6 ⊆ Aut C21 | 63 | 6 | C21.5(C3xC6) | 378,11 |
C21.6(C3×C6) = D7⋊He3 | φ: C3×C6/C3 → C6 ⊆ Aut C21 | 63 | 6 | C21.6(C3xC6) | 378,12 |
C21.7(C3×C6) = C18×C7⋊C3 | φ: C3×C6/C6 → C3 ⊆ Aut C21 | 126 | 3 | C21.7(C3xC6) | 378,23 |
C21.8(C3×C6) = C2×C63⋊C3 | φ: C3×C6/C6 → C3 ⊆ Aut C21 | 126 | 3 | C21.8(C3xC6) | 378,24 |
C21.9(C3×C6) = C2×C63⋊3C3 | φ: C3×C6/C6 → C3 ⊆ Aut C21 | 126 | 3 | C21.9(C3xC6) | 378,25 |
C21.10(C3×C6) = C6×C7⋊C9 | φ: C3×C6/C6 → C3 ⊆ Aut C21 | 378 | | C21.10(C3xC6) | 378,26 |
C21.11(C3×C6) = C2×C21.C32 | φ: C3×C6/C6 → C3 ⊆ Aut C21 | 126 | 3 | C21.11(C3xC6) | 378,27 |
C21.12(C3×C6) = C2×C7⋊He3 | φ: C3×C6/C6 → C3 ⊆ Aut C21 | 126 | 3 | C21.12(C3xC6) | 378,28 |
C21.13(C3×C6) = D7×C3×C9 | φ: C3×C6/C32 → C2 ⊆ Aut C21 | 189 | | C21.13(C3xC6) | 378,29 |
C21.14(C3×C6) = D7×He3 | φ: C3×C6/C32 → C2 ⊆ Aut C21 | 63 | 6 | C21.14(C3xC6) | 378,30 |
C21.15(C3×C6) = D7×3- 1+2 | φ: C3×C6/C32 → C2 ⊆ Aut C21 | 63 | 6 | C21.15(C3xC6) | 378,31 |
C21.16(C3×C6) = C14×He3 | central extension (φ=1) | 126 | 3 | C21.16(C3xC6) | 378,45 |
C21.17(C3×C6) = C14×3- 1+2 | central extension (φ=1) | 126 | 3 | C21.17(C3xC6) | 378,46 |