# Extensions 1→N→G→Q→1 with N=C6×D15 and Q=C2

Direct product G=N×Q with N=C6×D15 and Q=C2
dρLabelID
C2×C6×D15120C2xC6xD15360,159

Semidirect products G=N:Q with N=C6×D15 and Q=C2
extensionφ:Q→Out NdρLabelID
(C6×D15)⋊1C2 = C3×D60φ: C2/C1C2 ⊆ Out C6×D151202(C6xD15):1C2360,102
(C6×D15)⋊2C2 = C3×C157D4φ: C2/C1C2 ⊆ Out C6×D15602(C6xD15):2C2360,104
(C6×D15)⋊3C2 = C3×C3⋊D20φ: C2/C1C2 ⊆ Out C6×D15604(C6xD15):3C2360,62
(C6×D15)⋊4C2 = C3×C5⋊D12φ: C2/C1C2 ⊆ Out C6×D151204(C6xD15):4C2360,63
(C6×D15)⋊5C2 = D6⋊D15φ: C2/C1C2 ⊆ Out C6×D151204-(C6xD15):5C2360,80
(C6×D15)⋊6C2 = C3⋊D60φ: C2/C1C2 ⊆ Out C6×D15604+(C6xD15):6C2360,81
(C6×D15)⋊7C2 = D30⋊S3φ: C2/C1C2 ⊆ Out C6×D15604(C6xD15):7C2360,86
(C6×D15)⋊8C2 = C323D20φ: C2/C1C2 ⊆ Out C6×D151204(C6xD15):8C2360,87
(C6×D15)⋊9C2 = S3×C6×D5φ: C2/C1C2 ⊆ Out C6×D15604(C6xD15):9C2360,151
(C6×D15)⋊10C2 = C2×S3×D15φ: C2/C1C2 ⊆ Out C6×D15604+(C6xD15):10C2360,154
(C6×D15)⋊11C2 = C2×D15⋊S3φ: C2/C1C2 ⊆ Out C6×D15604(C6xD15):11C2360,155

Non-split extensions G=N.Q with N=C6×D15 and Q=C2
extensionφ:Q→Out NdρLabelID
(C6×D15).1C2 = C3×D30.C2φ: C2/C1C2 ⊆ Out C6×D151204(C6xD15).1C2360,60
(C6×D15).2C2 = Dic3×D15φ: C2/C1C2 ⊆ Out C6×D151204-(C6xD15).2C2360,77
(C6×D15).3C2 = D30.S3φ: C2/C1C2 ⊆ Out C6×D151204(C6xD15).3C2360,84
(C6×D15).4C2 = C12×D15φ: trivial image1202(C6xD15).4C2360,101

׿
×
𝔽