extension | φ:Q→Aut N | d | ρ | Label | ID |
(C5×C10).1D4 = D52⋊C4 | φ: D4/C1 → D4 ⊆ Aut C5×C10 | 20 | 4+ | (C5xC10).1D4 | 400,129 |
(C5×C10).2D4 = C2.D5≀C2 | φ: D4/C1 → D4 ⊆ Aut C5×C10 | 20 | 4 | (C5xC10).2D4 | 400,130 |
(C5×C10).3D4 = C52⋊D8 | φ: D4/C1 → D4 ⊆ Aut C5×C10 | 40 | 4 | (C5xC10).3D4 | 400,131 |
(C5×C10).4D4 = C52⋊SD16 | φ: D4/C1 → D4 ⊆ Aut C5×C10 | 40 | 4- | (C5xC10).4D4 | 400,132 |
(C5×C10).5D4 = C52⋊Q16 | φ: D4/C1 → D4 ⊆ Aut C5×C10 | 80 | 4- | (C5xC10).5D4 | 400,133 |
(C5×C10).6D4 = C52⋊2D8 | φ: D4/C2 → C22 ⊆ Aut C5×C10 | 80 | 4 | (C5xC10).6D4 | 400,64 |
(C5×C10).7D4 = C5⋊D40 | φ: D4/C2 → C22 ⊆ Aut C5×C10 | 40 | 4+ | (C5xC10).7D4 | 400,65 |
(C5×C10).8D4 = D20.D5 | φ: D4/C2 → C22 ⊆ Aut C5×C10 | 80 | 4 | (C5xC10).8D4 | 400,66 |
(C5×C10).9D4 = C52⋊3SD16 | φ: D4/C2 → C22 ⊆ Aut C5×C10 | 80 | 4- | (C5xC10).9D4 | 400,67 |
(C5×C10).10D4 = C52⋊4SD16 | φ: D4/C2 → C22 ⊆ Aut C5×C10 | 40 | 4+ | (C5xC10).10D4 | 400,68 |
(C5×C10).11D4 = C52⋊2Q16 | φ: D4/C2 → C22 ⊆ Aut C5×C10 | 80 | 4 | (C5xC10).11D4 | 400,69 |
(C5×C10).12D4 = C52⋊3Q16 | φ: D4/C2 → C22 ⊆ Aut C5×C10 | 80 | 4- | (C5xC10).12D4 | 400,70 |
(C5×C10).13D4 = D10⋊Dic5 | φ: D4/C2 → C22 ⊆ Aut C5×C10 | 80 | | (C5xC10).13D4 | 400,72 |
(C5×C10).14D4 = C10.D20 | φ: D4/C2 → C22 ⊆ Aut C5×C10 | 40 | | (C5xC10).14D4 | 400,73 |
(C5×C10).15D4 = Dic5⋊Dic5 | φ: D4/C2 → C22 ⊆ Aut C5×C10 | 80 | | (C5xC10).15D4 | 400,74 |
(C5×C10).16D4 = C10.Dic10 | φ: D4/C2 → C22 ⊆ Aut C5×C10 | 80 | | (C5xC10).16D4 | 400,75 |
(C5×C10).17D4 = C5×C40⋊C2 | φ: D4/C4 → C2 ⊆ Aut C5×C10 | 80 | 2 | (C5xC10).17D4 | 400,78 |
(C5×C10).18D4 = C5×D40 | φ: D4/C4 → C2 ⊆ Aut C5×C10 | 80 | 2 | (C5xC10).18D4 | 400,79 |
(C5×C10).19D4 = C5×Dic20 | φ: D4/C4 → C2 ⊆ Aut C5×C10 | 80 | 2 | (C5xC10).19D4 | 400,80 |
(C5×C10).20D4 = C5×C4⋊Dic5 | φ: D4/C4 → C2 ⊆ Aut C5×C10 | 80 | | (C5xC10).20D4 | 400,85 |
(C5×C10).21D4 = C5×D10⋊C4 | φ: D4/C4 → C2 ⊆ Aut C5×C10 | 80 | | (C5xC10).21D4 | 400,86 |
(C5×C10).22D4 = C40⋊2D5 | φ: D4/C4 → C2 ⊆ Aut C5×C10 | 200 | | (C5xC10).22D4 | 400,94 |
(C5×C10).23D4 = C52⋊5D8 | φ: D4/C4 → C2 ⊆ Aut C5×C10 | 200 | | (C5xC10).23D4 | 400,95 |
(C5×C10).24D4 = C40.D5 | φ: D4/C4 → C2 ⊆ Aut C5×C10 | 400 | | (C5xC10).24D4 | 400,96 |
(C5×C10).25D4 = C20⋊3Dic5 | φ: D4/C4 → C2 ⊆ Aut C5×C10 | 400 | | (C5xC10).25D4 | 400,101 |
(C5×C10).26D4 = C10.11D20 | φ: D4/C4 → C2 ⊆ Aut C5×C10 | 200 | | (C5xC10).26D4 | 400,102 |
(C5×C10).27D4 = C5×C10.D4 | φ: D4/C22 → C2 ⊆ Aut C5×C10 | 80 | | (C5xC10).27D4 | 400,84 |
(C5×C10).28D4 = C5×D4⋊D5 | φ: D4/C22 → C2 ⊆ Aut C5×C10 | 40 | 4 | (C5xC10).28D4 | 400,87 |
(C5×C10).29D4 = C5×D4.D5 | φ: D4/C22 → C2 ⊆ Aut C5×C10 | 40 | 4 | (C5xC10).29D4 | 400,88 |
(C5×C10).30D4 = C5×Q8⋊D5 | φ: D4/C22 → C2 ⊆ Aut C5×C10 | 80 | 4 | (C5xC10).30D4 | 400,89 |
(C5×C10).31D4 = C5×C5⋊Q16 | φ: D4/C22 → C2 ⊆ Aut C5×C10 | 80 | 4 | (C5xC10).31D4 | 400,90 |
(C5×C10).32D4 = C5×C23.D5 | φ: D4/C22 → C2 ⊆ Aut C5×C10 | 40 | | (C5xC10).32D4 | 400,91 |
(C5×C10).33D4 = C102.22C22 | φ: D4/C22 → C2 ⊆ Aut C5×C10 | 400 | | (C5xC10).33D4 | 400,100 |
(C5×C10).34D4 = C52⋊7D8 | φ: D4/C22 → C2 ⊆ Aut C5×C10 | 200 | | (C5xC10).34D4 | 400,103 |
(C5×C10).35D4 = C52⋊8SD16 | φ: D4/C22 → C2 ⊆ Aut C5×C10 | 200 | | (C5xC10).35D4 | 400,104 |
(C5×C10).36D4 = C52⋊10SD16 | φ: D4/C22 → C2 ⊆ Aut C5×C10 | 200 | | (C5xC10).36D4 | 400,105 |
(C5×C10).37D4 = C52⋊7Q16 | φ: D4/C22 → C2 ⊆ Aut C5×C10 | 400 | | (C5xC10).37D4 | 400,106 |
(C5×C10).38D4 = C102⋊11C4 | φ: D4/C22 → C2 ⊆ Aut C5×C10 | 200 | | (C5xC10).38D4 | 400,107 |
(C5×C10).39D4 = C22⋊C4×C52 | central extension (φ=1) | 200 | | (C5xC10).39D4 | 400,109 |
(C5×C10).40D4 = C4⋊C4×C52 | central extension (φ=1) | 400 | | (C5xC10).40D4 | 400,110 |
(C5×C10).41D4 = D8×C52 | central extension (φ=1) | 200 | | (C5xC10).41D4 | 400,113 |
(C5×C10).42D4 = SD16×C52 | central extension (φ=1) | 200 | | (C5xC10).42D4 | 400,114 |
(C5×C10).43D4 = Q16×C52 | central extension (φ=1) | 400 | | (C5xC10).43D4 | 400,115 |