Copied to
clipboard

G = D33:S3order 396 = 22·32·11

The semidirect product of D33 and S3 acting via S3/C3=C2

metabelian, supersoluble, monomial, A-group

Aliases: D33:S3, C33:3D6, C32:2D22, C11:2S32, C3:S3:D11, C3:3(S3xD11), (C3xD33):3C2, (C3xC33):4C22, (C11xC3:S3):2C2, SmallGroup(396,23)

Series: Derived Chief Lower central Upper central

C1C3xC33 — D33:S3
C1C11C33C3xC33C3xD33 — D33:S3
C3xC33 — D33:S3
C1

Generators and relations for D33:S3
 G = < a,b,c,d | a33=b2=c3=d2=1, bab=a-1, ac=ca, dad=a23, bc=cb, dbd=a22b, dcd=c-1 >

Subgroups: 440 in 44 conjugacy classes, 15 normal (7 characteristic)
Quotients: C1, C2, C22, S3, D6, D11, S32, D22, S3xD11, D33:S3
9C2
33C2
33C2
2C3
99C22
3S3
3S3
6S3
11S3
11S3
33C6
33C6
3D11
3D11
9C22
2C33
33D6
33D6
11C3xS3
11C3xS3
9D22
3C3xD11
3S3xC11
3S3xC11
3C3xD11
6S3xC11
11S32
3S3xD11
3S3xD11

Smallest permutation representation of D33:S3
On 66 points
Generators in S66
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33)(34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66)
(1 66)(2 65)(3 64)(4 63)(5 62)(6 61)(7 60)(8 59)(9 58)(10 57)(11 56)(12 55)(13 54)(14 53)(15 52)(16 51)(17 50)(18 49)(19 48)(20 47)(21 46)(22 45)(23 44)(24 43)(25 42)(26 41)(27 40)(28 39)(29 38)(30 37)(31 36)(32 35)(33 34)
(1 23 12)(2 24 13)(3 25 14)(4 26 15)(5 27 16)(6 28 17)(7 29 18)(8 30 19)(9 31 20)(10 32 21)(11 33 22)(34 45 56)(35 46 57)(36 47 58)(37 48 59)(38 49 60)(39 50 61)(40 51 62)(41 52 63)(42 53 64)(43 54 65)(44 55 66)
(2 24)(3 14)(5 27)(6 17)(8 30)(9 20)(11 33)(12 23)(15 26)(18 29)(21 32)(35 57)(36 47)(38 60)(39 50)(41 63)(42 53)(44 66)(45 56)(48 59)(51 62)(54 65)

G:=sub<Sym(66)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33)(34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66), (1,66)(2,65)(3,64)(4,63)(5,62)(6,61)(7,60)(8,59)(9,58)(10,57)(11,56)(12,55)(13,54)(14,53)(15,52)(16,51)(17,50)(18,49)(19,48)(20,47)(21,46)(22,45)(23,44)(24,43)(25,42)(26,41)(27,40)(28,39)(29,38)(30,37)(31,36)(32,35)(33,34), (1,23,12)(2,24,13)(3,25,14)(4,26,15)(5,27,16)(6,28,17)(7,29,18)(8,30,19)(9,31,20)(10,32,21)(11,33,22)(34,45,56)(35,46,57)(36,47,58)(37,48,59)(38,49,60)(39,50,61)(40,51,62)(41,52,63)(42,53,64)(43,54,65)(44,55,66), (2,24)(3,14)(5,27)(6,17)(8,30)(9,20)(11,33)(12,23)(15,26)(18,29)(21,32)(35,57)(36,47)(38,60)(39,50)(41,63)(42,53)(44,66)(45,56)(48,59)(51,62)(54,65)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33)(34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66), (1,66)(2,65)(3,64)(4,63)(5,62)(6,61)(7,60)(8,59)(9,58)(10,57)(11,56)(12,55)(13,54)(14,53)(15,52)(16,51)(17,50)(18,49)(19,48)(20,47)(21,46)(22,45)(23,44)(24,43)(25,42)(26,41)(27,40)(28,39)(29,38)(30,37)(31,36)(32,35)(33,34), (1,23,12)(2,24,13)(3,25,14)(4,26,15)(5,27,16)(6,28,17)(7,29,18)(8,30,19)(9,31,20)(10,32,21)(11,33,22)(34,45,56)(35,46,57)(36,47,58)(37,48,59)(38,49,60)(39,50,61)(40,51,62)(41,52,63)(42,53,64)(43,54,65)(44,55,66), (2,24)(3,14)(5,27)(6,17)(8,30)(9,20)(11,33)(12,23)(15,26)(18,29)(21,32)(35,57)(36,47)(38,60)(39,50)(41,63)(42,53)(44,66)(45,56)(48,59)(51,62)(54,65) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33),(34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66)], [(1,66),(2,65),(3,64),(4,63),(5,62),(6,61),(7,60),(8,59),(9,58),(10,57),(11,56),(12,55),(13,54),(14,53),(15,52),(16,51),(17,50),(18,49),(19,48),(20,47),(21,46),(22,45),(23,44),(24,43),(25,42),(26,41),(27,40),(28,39),(29,38),(30,37),(31,36),(32,35),(33,34)], [(1,23,12),(2,24,13),(3,25,14),(4,26,15),(5,27,16),(6,28,17),(7,29,18),(8,30,19),(9,31,20),(10,32,21),(11,33,22),(34,45,56),(35,46,57),(36,47,58),(37,48,59),(38,49,60),(39,50,61),(40,51,62),(41,52,63),(42,53,64),(43,54,65),(44,55,66)], [(2,24),(3,14),(5,27),(6,17),(8,30),(9,20),(11,33),(12,23),(15,26),(18,29),(21,32),(35,57),(36,47),(38,60),(39,50),(41,63),(42,53),(44,66),(45,56),(48,59),(51,62),(54,65)]])

39 conjugacy classes

class 1 2A2B2C3A3B3C6A6B11A···11E22A···22E33A···33T
order12223336611···1122···2233···33
size19333322466662···218···184···4

39 irreducible representations

dim1112222444
type+++++++++
imageC1C2C2S3D6D11D22S32S3xD11D33:S3
kernelD33:S3C3xD33C11xC3:S3D33C33C3:S3C32C11C3C1
# reps121225511010

Matrix representation of D33:S3 in GL6(F67)

900000
31150000
001000
000100
0000066
0000166
,
6660000
35610000
001000
000100
0000166
0000066
,
100000
010000
0066100
0066000
000010
000001
,
6600000
0660000
000100
001000
000001
000010

G:=sub<GL(6,GF(67))| [9,31,0,0,0,0,0,15,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,66,66],[6,35,0,0,0,0,66,61,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,66,66],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,66,66,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[66,0,0,0,0,0,0,66,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0] >;

D33:S3 in GAP, Magma, Sage, TeX

D_{33}\rtimes S_3
% in TeX

G:=Group("D33:S3");
// GroupNames label

G:=SmallGroup(396,23);
// by ID

G=gap.SmallGroup(396,23);
# by ID

G:=PCGroup([5,-2,-2,-3,-3,-11,122,67,248,9004]);
// Polycyclic

G:=Group<a,b,c,d|a^33=b^2=c^3=d^2=1,b*a*b=a^-1,a*c=c*a,d*a*d=a^23,b*c=c*b,d*b*d=a^22*b,d*c*d=c^-1>;
// generators/relations

Export

Subgroup lattice of D33:S3 in TeX

׿
x
:
Z
F
o
wr
Q
<