direct product, metacyclic, supersoluble, monomial, Z-group, 2-hyperelementary
Aliases: C3×D11, C11⋊C6, C33⋊2C2, SmallGroup(66,2)
Series: Derived ►Chief ►Lower central ►Upper central
C11 — C3×D11 |
Generators and relations for C3×D11
G = < a,b,c | a3=b11=c2=1, ab=ba, ac=ca, cbc=b-1 >
Character table of C3×D11
class | 1 | 2 | 3A | 3B | 6A | 6B | 11A | 11B | 11C | 11D | 11E | 33A | 33B | 33C | 33D | 33E | 33F | 33G | 33H | 33I | 33J | |
size | 1 | 11 | 1 | 1 | 11 | 11 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | -1 | ζ3 | ζ32 | ζ65 | ζ6 | 1 | 1 | 1 | 1 | 1 | ζ32 | ζ32 | ζ3 | ζ3 | ζ3 | ζ3 | ζ3 | ζ32 | ζ32 | ζ32 | linear of order 6 |
ρ4 | 1 | -1 | ζ32 | ζ3 | ζ6 | ζ65 | 1 | 1 | 1 | 1 | 1 | ζ3 | ζ3 | ζ32 | ζ32 | ζ32 | ζ32 | ζ32 | ζ3 | ζ3 | ζ3 | linear of order 6 |
ρ5 | 1 | 1 | ζ32 | ζ3 | ζ32 | ζ3 | 1 | 1 | 1 | 1 | 1 | ζ3 | ζ3 | ζ32 | ζ32 | ζ32 | ζ32 | ζ32 | ζ3 | ζ3 | ζ3 | linear of order 3 |
ρ6 | 1 | 1 | ζ3 | ζ32 | ζ3 | ζ32 | 1 | 1 | 1 | 1 | 1 | ζ32 | ζ32 | ζ3 | ζ3 | ζ3 | ζ3 | ζ3 | ζ32 | ζ32 | ζ32 | linear of order 3 |
ρ7 | 2 | 0 | 2 | 2 | 0 | 0 | ζ1110+ζ11 | ζ119+ζ112 | ζ118+ζ113 | ζ117+ζ114 | ζ116+ζ115 | ζ116+ζ115 | ζ1110+ζ11 | ζ1110+ζ11 | ζ119+ζ112 | ζ118+ζ113 | ζ117+ζ114 | ζ116+ζ115 | ζ119+ζ112 | ζ118+ζ113 | ζ117+ζ114 | orthogonal lifted from D11 |
ρ8 | 2 | 0 | 2 | 2 | 0 | 0 | ζ119+ζ112 | ζ117+ζ114 | ζ116+ζ115 | ζ118+ζ113 | ζ1110+ζ11 | ζ1110+ζ11 | ζ119+ζ112 | ζ119+ζ112 | ζ117+ζ114 | ζ116+ζ115 | ζ118+ζ113 | ζ1110+ζ11 | ζ117+ζ114 | ζ116+ζ115 | ζ118+ζ113 | orthogonal lifted from D11 |
ρ9 | 2 | 0 | 2 | 2 | 0 | 0 | ζ117+ζ114 | ζ118+ζ113 | ζ1110+ζ11 | ζ116+ζ115 | ζ119+ζ112 | ζ119+ζ112 | ζ117+ζ114 | ζ117+ζ114 | ζ118+ζ113 | ζ1110+ζ11 | ζ116+ζ115 | ζ119+ζ112 | ζ118+ζ113 | ζ1110+ζ11 | ζ116+ζ115 | orthogonal lifted from D11 |
ρ10 | 2 | 0 | 2 | 2 | 0 | 0 | ζ116+ζ115 | ζ1110+ζ11 | ζ117+ζ114 | ζ119+ζ112 | ζ118+ζ113 | ζ118+ζ113 | ζ116+ζ115 | ζ116+ζ115 | ζ1110+ζ11 | ζ117+ζ114 | ζ119+ζ112 | ζ118+ζ113 | ζ1110+ζ11 | ζ117+ζ114 | ζ119+ζ112 | orthogonal lifted from D11 |
ρ11 | 2 | 0 | 2 | 2 | 0 | 0 | ζ118+ζ113 | ζ116+ζ115 | ζ119+ζ112 | ζ1110+ζ11 | ζ117+ζ114 | ζ117+ζ114 | ζ118+ζ113 | ζ118+ζ113 | ζ116+ζ115 | ζ119+ζ112 | ζ1110+ζ11 | ζ117+ζ114 | ζ116+ζ115 | ζ119+ζ112 | ζ1110+ζ11 | orthogonal lifted from D11 |
ρ12 | 2 | 0 | -1+√-3 | -1-√-3 | 0 | 0 | ζ1110+ζ11 | ζ119+ζ112 | ζ118+ζ113 | ζ117+ζ114 | ζ116+ζ115 | ζ32ζ116+ζ32ζ115 | ζ32ζ1110+ζ32ζ11 | ζ3ζ1110+ζ3ζ11 | ζ3ζ119+ζ3ζ112 | ζ3ζ118+ζ3ζ113 | ζ3ζ117+ζ3ζ114 | ζ3ζ116+ζ3ζ115 | ζ32ζ119+ζ32ζ112 | ζ32ζ118+ζ32ζ113 | ζ32ζ117+ζ32ζ114 | complex faithful |
ρ13 | 2 | 0 | -1-√-3 | -1+√-3 | 0 | 0 | ζ117+ζ114 | ζ118+ζ113 | ζ1110+ζ11 | ζ116+ζ115 | ζ119+ζ112 | ζ3ζ119+ζ3ζ112 | ζ3ζ117+ζ3ζ114 | ζ32ζ117+ζ32ζ114 | ζ32ζ118+ζ32ζ113 | ζ32ζ1110+ζ32ζ11 | ζ32ζ116+ζ32ζ115 | ζ32ζ119+ζ32ζ112 | ζ3ζ118+ζ3ζ113 | ζ3ζ1110+ζ3ζ11 | ζ3ζ116+ζ3ζ115 | complex faithful |
ρ14 | 2 | 0 | -1+√-3 | -1-√-3 | 0 | 0 | ζ118+ζ113 | ζ116+ζ115 | ζ119+ζ112 | ζ1110+ζ11 | ζ117+ζ114 | ζ32ζ117+ζ32ζ114 | ζ32ζ118+ζ32ζ113 | ζ3ζ118+ζ3ζ113 | ζ3ζ116+ζ3ζ115 | ζ3ζ119+ζ3ζ112 | ζ3ζ1110+ζ3ζ11 | ζ3ζ117+ζ3ζ114 | ζ32ζ116+ζ32ζ115 | ζ32ζ119+ζ32ζ112 | ζ32ζ1110+ζ32ζ11 | complex faithful |
ρ15 | 2 | 0 | -1-√-3 | -1+√-3 | 0 | 0 | ζ119+ζ112 | ζ117+ζ114 | ζ116+ζ115 | ζ118+ζ113 | ζ1110+ζ11 | ζ3ζ1110+ζ3ζ11 | ζ3ζ119+ζ3ζ112 | ζ32ζ119+ζ32ζ112 | ζ32ζ117+ζ32ζ114 | ζ32ζ116+ζ32ζ115 | ζ32ζ118+ζ32ζ113 | ζ32ζ1110+ζ32ζ11 | ζ3ζ117+ζ3ζ114 | ζ3ζ116+ζ3ζ115 | ζ3ζ118+ζ3ζ113 | complex faithful |
ρ16 | 2 | 0 | -1-√-3 | -1+√-3 | 0 | 0 | ζ116+ζ115 | ζ1110+ζ11 | ζ117+ζ114 | ζ119+ζ112 | ζ118+ζ113 | ζ3ζ118+ζ3ζ113 | ζ3ζ116+ζ3ζ115 | ζ32ζ116+ζ32ζ115 | ζ32ζ1110+ζ32ζ11 | ζ32ζ117+ζ32ζ114 | ζ32ζ119+ζ32ζ112 | ζ32ζ118+ζ32ζ113 | ζ3ζ1110+ζ3ζ11 | ζ3ζ117+ζ3ζ114 | ζ3ζ119+ζ3ζ112 | complex faithful |
ρ17 | 2 | 0 | -1-√-3 | -1+√-3 | 0 | 0 | ζ1110+ζ11 | ζ119+ζ112 | ζ118+ζ113 | ζ117+ζ114 | ζ116+ζ115 | ζ3ζ116+ζ3ζ115 | ζ3ζ1110+ζ3ζ11 | ζ32ζ1110+ζ32ζ11 | ζ32ζ119+ζ32ζ112 | ζ32ζ118+ζ32ζ113 | ζ32ζ117+ζ32ζ114 | ζ32ζ116+ζ32ζ115 | ζ3ζ119+ζ3ζ112 | ζ3ζ118+ζ3ζ113 | ζ3ζ117+ζ3ζ114 | complex faithful |
ρ18 | 2 | 0 | -1+√-3 | -1-√-3 | 0 | 0 | ζ119+ζ112 | ζ117+ζ114 | ζ116+ζ115 | ζ118+ζ113 | ζ1110+ζ11 | ζ32ζ1110+ζ32ζ11 | ζ32ζ119+ζ32ζ112 | ζ3ζ119+ζ3ζ112 | ζ3ζ117+ζ3ζ114 | ζ3ζ116+ζ3ζ115 | ζ3ζ118+ζ3ζ113 | ζ3ζ1110+ζ3ζ11 | ζ32ζ117+ζ32ζ114 | ζ32ζ116+ζ32ζ115 | ζ32ζ118+ζ32ζ113 | complex faithful |
ρ19 | 2 | 0 | -1+√-3 | -1-√-3 | 0 | 0 | ζ116+ζ115 | ζ1110+ζ11 | ζ117+ζ114 | ζ119+ζ112 | ζ118+ζ113 | ζ32ζ118+ζ32ζ113 | ζ32ζ116+ζ32ζ115 | ζ3ζ116+ζ3ζ115 | ζ3ζ1110+ζ3ζ11 | ζ3ζ117+ζ3ζ114 | ζ3ζ119+ζ3ζ112 | ζ3ζ118+ζ3ζ113 | ζ32ζ1110+ζ32ζ11 | ζ32ζ117+ζ32ζ114 | ζ32ζ119+ζ32ζ112 | complex faithful |
ρ20 | 2 | 0 | -1+√-3 | -1-√-3 | 0 | 0 | ζ117+ζ114 | ζ118+ζ113 | ζ1110+ζ11 | ζ116+ζ115 | ζ119+ζ112 | ζ32ζ119+ζ32ζ112 | ζ32ζ117+ζ32ζ114 | ζ3ζ117+ζ3ζ114 | ζ3ζ118+ζ3ζ113 | ζ3ζ1110+ζ3ζ11 | ζ3ζ116+ζ3ζ115 | ζ3ζ119+ζ3ζ112 | ζ32ζ118+ζ32ζ113 | ζ32ζ1110+ζ32ζ11 | ζ32ζ116+ζ32ζ115 | complex faithful |
ρ21 | 2 | 0 | -1-√-3 | -1+√-3 | 0 | 0 | ζ118+ζ113 | ζ116+ζ115 | ζ119+ζ112 | ζ1110+ζ11 | ζ117+ζ114 | ζ3ζ117+ζ3ζ114 | ζ3ζ118+ζ3ζ113 | ζ32ζ118+ζ32ζ113 | ζ32ζ116+ζ32ζ115 | ζ32ζ119+ζ32ζ112 | ζ32ζ1110+ζ32ζ11 | ζ32ζ117+ζ32ζ114 | ζ3ζ116+ζ3ζ115 | ζ3ζ119+ζ3ζ112 | ζ3ζ1110+ζ3ζ11 | complex faithful |
(1 32 21)(2 33 22)(3 23 12)(4 24 13)(5 25 14)(6 26 15)(7 27 16)(8 28 17)(9 29 18)(10 30 19)(11 31 20)
(1 2 3 4 5 6 7 8 9 10 11)(12 13 14 15 16 17 18 19 20 21 22)(23 24 25 26 27 28 29 30 31 32 33)
(1 11)(2 10)(3 9)(4 8)(5 7)(12 18)(13 17)(14 16)(19 22)(20 21)(23 29)(24 28)(25 27)(30 33)(31 32)
G:=sub<Sym(33)| (1,32,21)(2,33,22)(3,23,12)(4,24,13)(5,25,14)(6,26,15)(7,27,16)(8,28,17)(9,29,18)(10,30,19)(11,31,20), (1,2,3,4,5,6,7,8,9,10,11)(12,13,14,15,16,17,18,19,20,21,22)(23,24,25,26,27,28,29,30,31,32,33), (1,11)(2,10)(3,9)(4,8)(5,7)(12,18)(13,17)(14,16)(19,22)(20,21)(23,29)(24,28)(25,27)(30,33)(31,32)>;
G:=Group( (1,32,21)(2,33,22)(3,23,12)(4,24,13)(5,25,14)(6,26,15)(7,27,16)(8,28,17)(9,29,18)(10,30,19)(11,31,20), (1,2,3,4,5,6,7,8,9,10,11)(12,13,14,15,16,17,18,19,20,21,22)(23,24,25,26,27,28,29,30,31,32,33), (1,11)(2,10)(3,9)(4,8)(5,7)(12,18)(13,17)(14,16)(19,22)(20,21)(23,29)(24,28)(25,27)(30,33)(31,32) );
G=PermutationGroup([[(1,32,21),(2,33,22),(3,23,12),(4,24,13),(5,25,14),(6,26,15),(7,27,16),(8,28,17),(9,29,18),(10,30,19),(11,31,20)], [(1,2,3,4,5,6,7,8,9,10,11),(12,13,14,15,16,17,18,19,20,21,22),(23,24,25,26,27,28,29,30,31,32,33)], [(1,11),(2,10),(3,9),(4,8),(5,7),(12,18),(13,17),(14,16),(19,22),(20,21),(23,29),(24,28),(25,27),(30,33),(31,32)]])
C3×D11 is a maximal subgroup of
C11⋊F7
C3×D11 is a maximal quotient of C11⋊F7
Matrix representation of C3×D11 ►in GL2(𝔽43) generated by
36 | 0 |
0 | 36 |
0 | 7 |
6 | 9 |
9 | 42 |
37 | 34 |
G:=sub<GL(2,GF(43))| [36,0,0,36],[0,6,7,9],[9,37,42,34] >;
C3×D11 in GAP, Magma, Sage, TeX
C_3\times D_{11}
% in TeX
G:=Group("C3xD11");
// GroupNames label
G:=SmallGroup(66,2);
// by ID
G=gap.SmallGroup(66,2);
# by ID
G:=PCGroup([3,-2,-3,-11,542]);
// Polycyclic
G:=Group<a,b,c|a^3=b^11=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^-1>;
// generators/relations
Export
Subgroup lattice of C3×D11 in TeX
Character table of C3×D11 in TeX