extension | φ:Q→Aut N | d | ρ | Label | ID |
(C2×C10).1D10 = D4×D25 | φ: D10/C5 → C22 ⊆ Aut C2×C10 | 100 | 4+ | (C2xC10).1D10 | 400,39 |
(C2×C10).2D10 = D4⋊2D25 | φ: D10/C5 → C22 ⊆ Aut C2×C10 | 200 | 4- | (C2xC10).2D10 | 400,40 |
(C2×C10).3D10 = Dic5.D10 | φ: D10/C5 → C22 ⊆ Aut C2×C10 | 40 | 4 | (C2xC10).3D10 | 400,173 |
(C2×C10).4D10 = D10.4D10 | φ: D10/C5 → C22 ⊆ Aut C2×C10 | 40 | 4- | (C2xC10).4D10 | 400,174 |
(C2×C10).5D10 = C20.D10 | φ: D10/C5 → C22 ⊆ Aut C2×C10 | 200 | | (C2xC10).5D10 | 400,196 |
(C2×C10).6D10 = C5×D4⋊2D5 | φ: D10/D5 → C2 ⊆ Aut C2×C10 | 40 | 4 | (C2xC10).6D10 | 400,186 |
(C2×C10).7D10 = Dic52 | φ: D10/D5 → C2 ⊆ Aut C2×C10 | 80 | | (C2xC10).7D10 | 400,71 |
(C2×C10).8D10 = D10⋊Dic5 | φ: D10/D5 → C2 ⊆ Aut C2×C10 | 80 | | (C2xC10).8D10 | 400,72 |
(C2×C10).9D10 = C10.D20 | φ: D10/D5 → C2 ⊆ Aut C2×C10 | 40 | | (C2xC10).9D10 | 400,73 |
(C2×C10).10D10 = Dic5⋊Dic5 | φ: D10/D5 → C2 ⊆ Aut C2×C10 | 80 | | (C2xC10).10D10 | 400,74 |
(C2×C10).11D10 = C10.Dic10 | φ: D10/D5 → C2 ⊆ Aut C2×C10 | 80 | | (C2xC10).11D10 | 400,75 |
(C2×C10).12D10 = C2×D5×Dic5 | φ: D10/D5 → C2 ⊆ Aut C2×C10 | 80 | | (C2xC10).12D10 | 400,172 |
(C2×C10).13D10 = C2×Dic5⋊2D5 | φ: D10/D5 → C2 ⊆ Aut C2×C10 | 40 | | (C2xC10).13D10 | 400,175 |
(C2×C10).14D10 = C2×C52⋊2D4 | φ: D10/D5 → C2 ⊆ Aut C2×C10 | 80 | | (C2xC10).14D10 | 400,176 |
(C2×C10).15D10 = C2×C5⋊D20 | φ: D10/D5 → C2 ⊆ Aut C2×C10 | 40 | | (C2xC10).15D10 | 400,177 |
(C2×C10).16D10 = C2×C52⋊2Q8 | φ: D10/D5 → C2 ⊆ Aut C2×C10 | 80 | | (C2xC10).16D10 | 400,178 |
(C2×C10).17D10 = C5×C4○D20 | φ: D10/C10 → C2 ⊆ Aut C2×C10 | 40 | 2 | (C2xC10).17D10 | 400,184 |
(C2×C10).18D10 = C4×Dic25 | φ: D10/C10 → C2 ⊆ Aut C2×C10 | 400 | | (C2xC10).18D10 | 400,11 |
(C2×C10).19D10 = C50.D4 | φ: D10/C10 → C2 ⊆ Aut C2×C10 | 400 | | (C2xC10).19D10 | 400,12 |
(C2×C10).20D10 = C4⋊Dic25 | φ: D10/C10 → C2 ⊆ Aut C2×C10 | 400 | | (C2xC10).20D10 | 400,13 |
(C2×C10).21D10 = D50⋊C4 | φ: D10/C10 → C2 ⊆ Aut C2×C10 | 200 | | (C2xC10).21D10 | 400,14 |
(C2×C10).22D10 = C23.D25 | φ: D10/C10 → C2 ⊆ Aut C2×C10 | 200 | | (C2xC10).22D10 | 400,19 |
(C2×C10).23D10 = C2×Dic50 | φ: D10/C10 → C2 ⊆ Aut C2×C10 | 400 | | (C2xC10).23D10 | 400,35 |
(C2×C10).24D10 = C2×C4×D25 | φ: D10/C10 → C2 ⊆ Aut C2×C10 | 200 | | (C2xC10).24D10 | 400,36 |
(C2×C10).25D10 = C2×D100 | φ: D10/C10 → C2 ⊆ Aut C2×C10 | 200 | | (C2xC10).25D10 | 400,37 |
(C2×C10).26D10 = D100⋊5C2 | φ: D10/C10 → C2 ⊆ Aut C2×C10 | 200 | 2 | (C2xC10).26D10 | 400,38 |
(C2×C10).27D10 = C22×Dic25 | φ: D10/C10 → C2 ⊆ Aut C2×C10 | 400 | | (C2xC10).27D10 | 400,43 |
(C2×C10).28D10 = C2×C25⋊D4 | φ: D10/C10 → C2 ⊆ Aut C2×C10 | 200 | | (C2xC10).28D10 | 400,44 |
(C2×C10).29D10 = C23×D25 | φ: D10/C10 → C2 ⊆ Aut C2×C10 | 200 | | (C2xC10).29D10 | 400,54 |
(C2×C10).30D10 = C4×C52⋊6C4 | φ: D10/C10 → C2 ⊆ Aut C2×C10 | 400 | | (C2xC10).30D10 | 400,99 |
(C2×C10).31D10 = C102.22C22 | φ: D10/C10 → C2 ⊆ Aut C2×C10 | 400 | | (C2xC10).31D10 | 400,100 |
(C2×C10).32D10 = C20⋊3Dic5 | φ: D10/C10 → C2 ⊆ Aut C2×C10 | 400 | | (C2xC10).32D10 | 400,101 |
(C2×C10).33D10 = C10.11D20 | φ: D10/C10 → C2 ⊆ Aut C2×C10 | 200 | | (C2xC10).33D10 | 400,102 |
(C2×C10).34D10 = C102⋊11C4 | φ: D10/C10 → C2 ⊆ Aut C2×C10 | 200 | | (C2xC10).34D10 | 400,107 |
(C2×C10).35D10 = C2×C52⋊4Q8 | φ: D10/C10 → C2 ⊆ Aut C2×C10 | 400 | | (C2xC10).35D10 | 400,191 |
(C2×C10).36D10 = C2×C4×C5⋊D5 | φ: D10/C10 → C2 ⊆ Aut C2×C10 | 200 | | (C2xC10).36D10 | 400,192 |
(C2×C10).37D10 = C2×C20⋊D5 | φ: D10/C10 → C2 ⊆ Aut C2×C10 | 200 | | (C2xC10).37D10 | 400,193 |
(C2×C10).38D10 = C20.50D10 | φ: D10/C10 → C2 ⊆ Aut C2×C10 | 200 | | (C2xC10).38D10 | 400,194 |
(C2×C10).39D10 = C22×C52⋊6C4 | φ: D10/C10 → C2 ⊆ Aut C2×C10 | 400 | | (C2xC10).39D10 | 400,199 |
(C2×C10).40D10 = Dic5×C20 | central extension (φ=1) | 80 | | (C2xC10).40D10 | 400,83 |
(C2×C10).41D10 = C5×C10.D4 | central extension (φ=1) | 80 | | (C2xC10).41D10 | 400,84 |
(C2×C10).42D10 = C5×C4⋊Dic5 | central extension (φ=1) | 80 | | (C2xC10).42D10 | 400,85 |
(C2×C10).43D10 = C5×D10⋊C4 | central extension (φ=1) | 80 | | (C2xC10).43D10 | 400,86 |
(C2×C10).44D10 = C5×C23.D5 | central extension (φ=1) | 40 | | (C2xC10).44D10 | 400,91 |
(C2×C10).45D10 = C10×Dic10 | central extension (φ=1) | 80 | | (C2xC10).45D10 | 400,181 |
(C2×C10).46D10 = D5×C2×C20 | central extension (φ=1) | 80 | | (C2xC10).46D10 | 400,182 |
(C2×C10).47D10 = C10×D20 | central extension (φ=1) | 80 | | (C2xC10).47D10 | 400,183 |
(C2×C10).48D10 = Dic5×C2×C10 | central extension (φ=1) | 80 | | (C2xC10).48D10 | 400,189 |