Copied to
clipboard

G = D207order 414 = 2·32·23

Dihedral group

metacyclic, supersoluble, monomial, Z-group, 2-hyperelementary

Aliases: D207, C9⋊D23, C23⋊D9, C3.D69, C2071C2, C69.1S3, sometimes denoted D414 or Dih207 or Dih414, SmallGroup(414,3)

Series: Derived Chief Lower central Upper central

C1C207 — D207
C1C3C69C207 — D207
C207 — D207
C1

Generators and relations for D207
 G = < a,b | a207=b2=1, bab=a-1 >

207C2
69S3
9D23
23D9
3D69

Smallest permutation representation of D207
On 207 points
Generators in S207
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207)
(2 207)(3 206)(4 205)(5 204)(6 203)(7 202)(8 201)(9 200)(10 199)(11 198)(12 197)(13 196)(14 195)(15 194)(16 193)(17 192)(18 191)(19 190)(20 189)(21 188)(22 187)(23 186)(24 185)(25 184)(26 183)(27 182)(28 181)(29 180)(30 179)(31 178)(32 177)(33 176)(34 175)(35 174)(36 173)(37 172)(38 171)(39 170)(40 169)(41 168)(42 167)(43 166)(44 165)(45 164)(46 163)(47 162)(48 161)(49 160)(50 159)(51 158)(52 157)(53 156)(54 155)(55 154)(56 153)(57 152)(58 151)(59 150)(60 149)(61 148)(62 147)(63 146)(64 145)(65 144)(66 143)(67 142)(68 141)(69 140)(70 139)(71 138)(72 137)(73 136)(74 135)(75 134)(76 133)(77 132)(78 131)(79 130)(80 129)(81 128)(82 127)(83 126)(84 125)(85 124)(86 123)(87 122)(88 121)(89 120)(90 119)(91 118)(92 117)(93 116)(94 115)(95 114)(96 113)(97 112)(98 111)(99 110)(100 109)(101 108)(102 107)(103 106)(104 105)

G:=sub<Sym(207)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207), (2,207)(3,206)(4,205)(5,204)(6,203)(7,202)(8,201)(9,200)(10,199)(11,198)(12,197)(13,196)(14,195)(15,194)(16,193)(17,192)(18,191)(19,190)(20,189)(21,188)(22,187)(23,186)(24,185)(25,184)(26,183)(27,182)(28,181)(29,180)(30,179)(31,178)(32,177)(33,176)(34,175)(35,174)(36,173)(37,172)(38,171)(39,170)(40,169)(41,168)(42,167)(43,166)(44,165)(45,164)(46,163)(47,162)(48,161)(49,160)(50,159)(51,158)(52,157)(53,156)(54,155)(55,154)(56,153)(57,152)(58,151)(59,150)(60,149)(61,148)(62,147)(63,146)(64,145)(65,144)(66,143)(67,142)(68,141)(69,140)(70,139)(71,138)(72,137)(73,136)(74,135)(75,134)(76,133)(77,132)(78,131)(79,130)(80,129)(81,128)(82,127)(83,126)(84,125)(85,124)(86,123)(87,122)(88,121)(89,120)(90,119)(91,118)(92,117)(93,116)(94,115)(95,114)(96,113)(97,112)(98,111)(99,110)(100,109)(101,108)(102,107)(103,106)(104,105)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207), (2,207)(3,206)(4,205)(5,204)(6,203)(7,202)(8,201)(9,200)(10,199)(11,198)(12,197)(13,196)(14,195)(15,194)(16,193)(17,192)(18,191)(19,190)(20,189)(21,188)(22,187)(23,186)(24,185)(25,184)(26,183)(27,182)(28,181)(29,180)(30,179)(31,178)(32,177)(33,176)(34,175)(35,174)(36,173)(37,172)(38,171)(39,170)(40,169)(41,168)(42,167)(43,166)(44,165)(45,164)(46,163)(47,162)(48,161)(49,160)(50,159)(51,158)(52,157)(53,156)(54,155)(55,154)(56,153)(57,152)(58,151)(59,150)(60,149)(61,148)(62,147)(63,146)(64,145)(65,144)(66,143)(67,142)(68,141)(69,140)(70,139)(71,138)(72,137)(73,136)(74,135)(75,134)(76,133)(77,132)(78,131)(79,130)(80,129)(81,128)(82,127)(83,126)(84,125)(85,124)(86,123)(87,122)(88,121)(89,120)(90,119)(91,118)(92,117)(93,116)(94,115)(95,114)(96,113)(97,112)(98,111)(99,110)(100,109)(101,108)(102,107)(103,106)(104,105) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207)], [(2,207),(3,206),(4,205),(5,204),(6,203),(7,202),(8,201),(9,200),(10,199),(11,198),(12,197),(13,196),(14,195),(15,194),(16,193),(17,192),(18,191),(19,190),(20,189),(21,188),(22,187),(23,186),(24,185),(25,184),(26,183),(27,182),(28,181),(29,180),(30,179),(31,178),(32,177),(33,176),(34,175),(35,174),(36,173),(37,172),(38,171),(39,170),(40,169),(41,168),(42,167),(43,166),(44,165),(45,164),(46,163),(47,162),(48,161),(49,160),(50,159),(51,158),(52,157),(53,156),(54,155),(55,154),(56,153),(57,152),(58,151),(59,150),(60,149),(61,148),(62,147),(63,146),(64,145),(65,144),(66,143),(67,142),(68,141),(69,140),(70,139),(71,138),(72,137),(73,136),(74,135),(75,134),(76,133),(77,132),(78,131),(79,130),(80,129),(81,128),(82,127),(83,126),(84,125),(85,124),(86,123),(87,122),(88,121),(89,120),(90,119),(91,118),(92,117),(93,116),(94,115),(95,114),(96,113),(97,112),(98,111),(99,110),(100,109),(101,108),(102,107),(103,106),(104,105)]])

105 conjugacy classes

class 1  2  3 9A9B9C23A···23K69A···69V207A···207BN
order12399923···2369···69207···207
size120722222···22···22···2

105 irreducible representations

dim1122222
type+++++++
imageC1C2S3D9D23D69D207
kernelD207C207C69C23C9C3C1
# reps1113112266

Matrix representation of D207 in GL2(𝔽829) generated by

315116
713431
,
01
10
G:=sub<GL(2,GF(829))| [315,713,116,431],[0,1,1,0] >;

D207 in GAP, Magma, Sage, TeX

D_{207}
% in TeX

G:=Group("D207");
// GroupNames label

G:=SmallGroup(414,3);
// by ID

G=gap.SmallGroup(414,3);
# by ID

G:=PCGroup([4,-2,-3,-23,-3,1137,1109,1586,4419]);
// Polycyclic

G:=Group<a,b|a^207=b^2=1,b*a*b=a^-1>;
// generators/relations

Export

Subgroup lattice of D207 in TeX

׿
×
𝔽