extension | φ:Q→Aut N | d | ρ | Label | ID |
(C2×C26).1D4 = D52⋊7C4 | φ: D4/C2 → C22 ⊆ Aut C2×C26 | 104 | 4 | (C2xC26).1D4 | 416,32 |
(C2×C26).2D4 = C23⋊Dic13 | φ: D4/C2 → C22 ⊆ Aut C2×C26 | 104 | 4 | (C2xC26).2D4 | 416,41 |
(C2×C26).3D4 = C52.56D4 | φ: D4/C2 → C22 ⊆ Aut C2×C26 | 104 | 4 | (C2xC26).3D4 | 416,44 |
(C2×C26).4D4 = C22.D52 | φ: D4/C2 → C22 ⊆ Aut C2×C26 | 208 | | (C2xC26).4D4 | 416,107 |
(C2×C26).5D4 = C8⋊D26 | φ: D4/C2 → C22 ⊆ Aut C2×C26 | 104 | 4+ | (C2xC26).5D4 | 416,129 |
(C2×C26).6D4 = C8.D26 | φ: D4/C2 → C22 ⊆ Aut C2×C26 | 208 | 4- | (C2xC26).6D4 | 416,130 |
(C2×C26).7D4 = C23.18D26 | φ: D4/C2 → C22 ⊆ Aut C2×C26 | 208 | | (C2xC26).7D4 | 416,156 |
(C2×C26).8D4 = D4⋊D26 | φ: D4/C2 → C22 ⊆ Aut C2×C26 | 104 | 4+ | (C2xC26).8D4 | 416,170 |
(C2×C26).9D4 = C52.C23 | φ: D4/C2 → C22 ⊆ Aut C2×C26 | 208 | 4 | (C2xC26).9D4 | 416,171 |
(C2×C26).10D4 = D4.9D26 | φ: D4/C2 → C22 ⊆ Aut C2×C26 | 208 | 4- | (C2xC26).10D4 | 416,172 |
(C2×C26).11D4 = C13×C4○D8 | φ: D4/C4 → C2 ⊆ Aut C2×C26 | 208 | 2 | (C2xC26).11D4 | 416,196 |
(C2×C26).12D4 = C52.44D4 | φ: D4/C4 → C2 ⊆ Aut C2×C26 | 416 | | (C2xC26).12D4 | 416,23 |
(C2×C26).13D4 = C104⋊6C4 | φ: D4/C4 → C2 ⊆ Aut C2×C26 | 416 | | (C2xC26).13D4 | 416,24 |
(C2×C26).14D4 = C104⋊5C4 | φ: D4/C4 → C2 ⊆ Aut C2×C26 | 416 | | (C2xC26).14D4 | 416,25 |
(C2×C26).15D4 = D52⋊5C4 | φ: D4/C4 → C2 ⊆ Aut C2×C26 | 208 | | (C2xC26).15D4 | 416,28 |
(C2×C26).16D4 = C2×C104⋊C2 | φ: D4/C4 → C2 ⊆ Aut C2×C26 | 208 | | (C2xC26).16D4 | 416,123 |
(C2×C26).17D4 = C2×D104 | φ: D4/C4 → C2 ⊆ Aut C2×C26 | 208 | | (C2xC26).17D4 | 416,124 |
(C2×C26).18D4 = D104⋊7C2 | φ: D4/C4 → C2 ⊆ Aut C2×C26 | 208 | 2 | (C2xC26).18D4 | 416,125 |
(C2×C26).19D4 = C2×Dic52 | φ: D4/C4 → C2 ⊆ Aut C2×C26 | 416 | | (C2xC26).19D4 | 416,126 |
(C2×C26).20D4 = C2×C52⋊3C4 | φ: D4/C4 → C2 ⊆ Aut C2×C26 | 416 | | (C2xC26).20D4 | 416,146 |
(C2×C26).21D4 = C13×C23⋊C4 | φ: D4/C22 → C2 ⊆ Aut C2×C26 | 104 | 4 | (C2xC26).21D4 | 416,49 |
(C2×C26).22D4 = C13×C4≀C2 | φ: D4/C22 → C2 ⊆ Aut C2×C26 | 104 | 2 | (C2xC26).22D4 | 416,54 |
(C2×C26).23D4 = C13×C22.D4 | φ: D4/C22 → C2 ⊆ Aut C2×C26 | 208 | | (C2xC26).23D4 | 416,184 |
(C2×C26).24D4 = C13×C8⋊C22 | φ: D4/C22 → C2 ⊆ Aut C2×C26 | 104 | 4 | (C2xC26).24D4 | 416,197 |
(C2×C26).25D4 = C13×C8.C22 | φ: D4/C22 → C2 ⊆ Aut C2×C26 | 208 | 4 | (C2xC26).25D4 | 416,198 |
(C2×C26).26D4 = D52⋊4C4 | φ: D4/C22 → C2 ⊆ Aut C2×C26 | 104 | 2 | (C2xC26).26D4 | 416,12 |
(C2×C26).27D4 = C22.2D52 | φ: D4/C22 → C2 ⊆ Aut C2×C26 | 104 | 4 | (C2xC26).27D4 | 416,13 |
(C2×C26).28D4 = C26.D8 | φ: D4/C22 → C2 ⊆ Aut C2×C26 | 416 | | (C2xC26).28D4 | 416,14 |
(C2×C26).29D4 = C52.Q8 | φ: D4/C22 → C2 ⊆ Aut C2×C26 | 416 | | (C2xC26).29D4 | 416,15 |
(C2×C26).30D4 = D52⋊6C4 | φ: D4/C22 → C2 ⊆ Aut C2×C26 | 208 | | (C2xC26).30D4 | 416,16 |
(C2×C26).31D4 = C26.Q16 | φ: D4/C22 → C2 ⊆ Aut C2×C26 | 416 | | (C2xC26).31D4 | 416,17 |
(C2×C26).32D4 = C26.10C42 | φ: D4/C22 → C2 ⊆ Aut C2×C26 | 416 | | (C2xC26).32D4 | 416,38 |
(C2×C26).33D4 = D4⋊Dic13 | φ: D4/C22 → C2 ⊆ Aut C2×C26 | 208 | | (C2xC26).33D4 | 416,39 |
(C2×C26).34D4 = Q8⋊Dic13 | φ: D4/C22 → C2 ⊆ Aut C2×C26 | 416 | | (C2xC26).34D4 | 416,42 |
(C2×C26).35D4 = C2×C26.D4 | φ: D4/C22 → C2 ⊆ Aut C2×C26 | 416 | | (C2xC26).35D4 | 416,144 |
(C2×C26).36D4 = C2×D26⋊C4 | φ: D4/C22 → C2 ⊆ Aut C2×C26 | 208 | | (C2xC26).36D4 | 416,148 |
(C2×C26).37D4 = C23.23D26 | φ: D4/C22 → C2 ⊆ Aut C2×C26 | 208 | | (C2xC26).37D4 | 416,150 |
(C2×C26).38D4 = C2×D4⋊D13 | φ: D4/C22 → C2 ⊆ Aut C2×C26 | 208 | | (C2xC26).38D4 | 416,152 |
(C2×C26).39D4 = D52⋊6C22 | φ: D4/C22 → C2 ⊆ Aut C2×C26 | 104 | 4 | (C2xC26).39D4 | 416,153 |
(C2×C26).40D4 = C2×D4.D13 | φ: D4/C22 → C2 ⊆ Aut C2×C26 | 208 | | (C2xC26).40D4 | 416,154 |
(C2×C26).41D4 = C2×Q8⋊D13 | φ: D4/C22 → C2 ⊆ Aut C2×C26 | 208 | | (C2xC26).41D4 | 416,162 |
(C2×C26).42D4 = Q8.D26 | φ: D4/C22 → C2 ⊆ Aut C2×C26 | 208 | 4 | (C2xC26).42D4 | 416,163 |
(C2×C26).43D4 = C2×C13⋊Q16 | φ: D4/C22 → C2 ⊆ Aut C2×C26 | 416 | | (C2xC26).43D4 | 416,164 |
(C2×C26).44D4 = C2×C23.D13 | φ: D4/C22 → C2 ⊆ Aut C2×C26 | 208 | | (C2xC26).44D4 | 416,173 |
(C2×C26).45D4 = C13×C2.C42 | central extension (φ=1) | 416 | | (C2xC26).45D4 | 416,45 |
(C2×C26).46D4 = C13×D4⋊C4 | central extension (φ=1) | 208 | | (C2xC26).46D4 | 416,52 |
(C2×C26).47D4 = C13×Q8⋊C4 | central extension (φ=1) | 416 | | (C2xC26).47D4 | 416,53 |
(C2×C26).48D4 = C13×C4.Q8 | central extension (φ=1) | 416 | | (C2xC26).48D4 | 416,56 |
(C2×C26).49D4 = C13×C2.D8 | central extension (φ=1) | 416 | | (C2xC26).49D4 | 416,57 |
(C2×C26).50D4 = C22⋊C4×C26 | central extension (φ=1) | 208 | | (C2xC26).50D4 | 416,176 |
(C2×C26).51D4 = C4⋊C4×C26 | central extension (φ=1) | 416 | | (C2xC26).51D4 | 416,177 |
(C2×C26).52D4 = D8×C26 | central extension (φ=1) | 208 | | (C2xC26).52D4 | 416,193 |
(C2×C26).53D4 = SD16×C26 | central extension (φ=1) | 208 | | (C2xC26).53D4 | 416,194 |
(C2×C26).54D4 = Q16×C26 | central extension (φ=1) | 416 | | (C2xC26).54D4 | 416,195 |