Extensions 1→N→G→Q→1 with N=C3×C9 and Q=SD16

Direct product G=N×Q with N=C3×C9 and Q=SD16
dρLabelID
SD16×C3×C9216SD16xC3xC9432,218

Semidirect products G=N:Q with N=C3×C9 and Q=SD16
extensionφ:Q→Aut NdρLabelID
(C3×C9)⋊1SD16 = D36.S3φ: SD16/C4C22 ⊆ Aut C3×C91444-(C3xC9):1SD16432,62
(C3×C9)⋊2SD16 = C6.D36φ: SD16/C4C22 ⊆ Aut C3×C9724+(C3xC9):2SD16432,63
(C3×C9)⋊3SD16 = D12.D9φ: SD16/C4C22 ⊆ Aut C3×C91444(C3xC9):3SD16432,70
(C3×C9)⋊4SD16 = C36.D6φ: SD16/C4C22 ⊆ Aut C3×C91444-(C3xC9):4SD16432,71
(C3×C9)⋊5SD16 = Dic6⋊D9φ: SD16/C4C22 ⊆ Aut C3×C91444(C3xC9):5SD16432,72
(C3×C9)⋊6SD16 = C18.D12φ: SD16/C4C22 ⊆ Aut C3×C9724+(C3xC9):6SD16432,73
(C3×C9)⋊7SD16 = C9×C24⋊C2φ: SD16/C8C2 ⊆ Aut C3×C91442(C3xC9):7SD16432,111
(C3×C9)⋊8SD16 = C3×C72⋊C2φ: SD16/C8C2 ⊆ Aut C3×C91442(C3xC9):8SD16432,107
(C3×C9)⋊9SD16 = C24⋊D9φ: SD16/C8C2 ⊆ Aut C3×C9216(C3xC9):9SD16432,171
(C3×C9)⋊10SD16 = C9×D4.S3φ: SD16/D4C2 ⊆ Aut C3×C9724(C3xC9):10SD16432,151
(C3×C9)⋊11SD16 = C3×D4.D9φ: SD16/D4C2 ⊆ Aut C3×C9724(C3xC9):11SD16432,148
(C3×C9)⋊12SD16 = C36.17D6φ: SD16/D4C2 ⊆ Aut C3×C9216(C3xC9):12SD16432,190
(C3×C9)⋊13SD16 = C9×Q82S3φ: SD16/Q8C2 ⊆ Aut C3×C91444(C3xC9):13SD16432,158
(C3×C9)⋊14SD16 = C3×Q82D9φ: SD16/Q8C2 ⊆ Aut C3×C91444(C3xC9):14SD16432,157
(C3×C9)⋊15SD16 = C36.20D6φ: SD16/Q8C2 ⊆ Aut C3×C9216(C3xC9):15SD16432,195


׿
×
𝔽