extension | φ:Q→Out N | d | ρ | Label | ID |
(C2×He3).1(C2×C4) = He3⋊2(C2×C8) | φ: C2×C4/C2 → C4 ⊆ Out C2×He3 | 72 | 3 | (C2xHe3).1(C2xC4) | 432,273 |
(C2×He3).2(C2×C4) = He3⋊1M4(2) | φ: C2×C4/C2 → C4 ⊆ Out C2×He3 | 72 | 6 | (C2xHe3).2(C2xC4) | 432,274 |
(C2×He3).3(C2×C4) = C4×He3⋊C4 | φ: C2×C4/C2 → C4 ⊆ Out C2×He3 | 72 | 3 | (C2xHe3).3(C2xC4) | 432,275 |
(C2×He3).4(C2×C4) = C4⋊(He3⋊C4) | φ: C2×C4/C2 → C4 ⊆ Out C2×He3 | 72 | 6 | (C2xHe3).4(C2xC4) | 432,276 |
(C2×He3).5(C2×C4) = C2×He3⋊2C8 | φ: C2×C4/C2 → C4 ⊆ Out C2×He3 | 144 | | (C2xHe3).5(C2xC4) | 432,277 |
(C2×He3).6(C2×C4) = He3⋊4M4(2) | φ: C2×C4/C2 → C4 ⊆ Out C2×He3 | 72 | 6 | (C2xHe3).6(C2xC4) | 432,278 |
(C2×He3).7(C2×C4) = C22⋊(He3⋊C4) | φ: C2×C4/C2 → C4 ⊆ Out C2×He3 | 36 | 6 | (C2xHe3).7(C2xC4) | 432,279 |
(C2×He3).8(C2×C4) = C32⋊C6⋊C8 | φ: C2×C4/C2 → C22 ⊆ Out C2×He3 | 72 | 6 | (C2xHe3).8(C2xC4) | 432,76 |
(C2×He3).9(C2×C4) = He3⋊M4(2) | φ: C2×C4/C2 → C22 ⊆ Out C2×He3 | 72 | 6 | (C2xHe3).9(C2xC4) | 432,77 |
(C2×He3).10(C2×C4) = C12.89S32 | φ: C2×C4/C2 → C22 ⊆ Out C2×He3 | 72 | 6 | (C2xHe3).10(C2xC4) | 432,81 |
(C2×He3).11(C2×C4) = He3⋊3M4(2) | φ: C2×C4/C2 → C22 ⊆ Out C2×He3 | 72 | 6 | (C2xHe3).11(C2xC4) | 432,82 |
(C2×He3).12(C2×C4) = He3⋊C42 | φ: C2×C4/C2 → C22 ⊆ Out C2×He3 | 144 | | (C2xHe3).12(C2xC4) | 432,94 |
(C2×He3).13(C2×C4) = C62.D6 | φ: C2×C4/C2 → C22 ⊆ Out C2×He3 | 144 | | (C2xHe3).13(C2xC4) | 432,95 |
(C2×He3).14(C2×C4) = C62.3D6 | φ: C2×C4/C2 → C22 ⊆ Out C2×He3 | 144 | | (C2xHe3).14(C2xC4) | 432,96 |
(C2×He3).15(C2×C4) = C62.4D6 | φ: C2×C4/C2 → C22 ⊆ Out C2×He3 | 72 | | (C2xHe3).15(C2xC4) | 432,97 |
(C2×He3).16(C2×C4) = C62.5D6 | φ: C2×C4/C2 → C22 ⊆ Out C2×He3 | 72 | | (C2xHe3).16(C2xC4) | 432,98 |
(C2×He3).17(C2×C4) = C8×C32⋊C6 | φ: C2×C4/C4 → C2 ⊆ Out C2×He3 | 72 | 6 | (C2xHe3).17(C2xC4) | 432,115 |
(C2×He3).18(C2×C4) = He3⋊5M4(2) | φ: C2×C4/C4 → C2 ⊆ Out C2×He3 | 72 | 6 | (C2xHe3).18(C2xC4) | 432,116 |
(C2×He3).19(C2×C4) = C62.19D6 | φ: C2×C4/C4 → C2 ⊆ Out C2×He3 | 144 | | (C2xHe3).19(C2xC4) | 432,139 |
(C2×He3).20(C2×C4) = C62.21D6 | φ: C2×C4/C4 → C2 ⊆ Out C2×He3 | 72 | | (C2xHe3).20(C2xC4) | 432,141 |
(C2×He3).21(C2×C4) = C8×He3⋊C2 | φ: C2×C4/C4 → C2 ⊆ Out C2×He3 | 72 | 3 | (C2xHe3).21(C2xC4) | 432,173 |
(C2×He3).22(C2×C4) = He3⋊6M4(2) | φ: C2×C4/C4 → C2 ⊆ Out C2×He3 | 72 | 6 | (C2xHe3).22(C2xC4) | 432,174 |
(C2×He3).23(C2×C4) = C4×He3⋊3C4 | φ: C2×C4/C4 → C2 ⊆ Out C2×He3 | 144 | | (C2xHe3).23(C2xC4) | 432,186 |
(C2×He3).24(C2×C4) = C62.29D6 | φ: C2×C4/C4 → C2 ⊆ Out C2×He3 | 144 | | (C2xHe3).24(C2xC4) | 432,187 |
(C2×He3).25(C2×C4) = C62.31D6 | φ: C2×C4/C4 → C2 ⊆ Out C2×He3 | 72 | | (C2xHe3).25(C2xC4) | 432,189 |
(C2×He3).26(C2×C4) = C2×He3⋊3C8 | φ: C2×C4/C22 → C2 ⊆ Out C2×He3 | 144 | | (C2xHe3).26(C2xC4) | 432,136 |
(C2×He3).27(C2×C4) = He3⋊7M4(2) | φ: C2×C4/C22 → C2 ⊆ Out C2×He3 | 72 | 6 | (C2xHe3).27(C2xC4) | 432,137 |
(C2×He3).28(C2×C4) = C4×C32⋊C12 | φ: C2×C4/C22 → C2 ⊆ Out C2×He3 | 144 | | (C2xHe3).28(C2xC4) | 432,138 |
(C2×He3).29(C2×C4) = C62.20D6 | φ: C2×C4/C22 → C2 ⊆ Out C2×He3 | 144 | | (C2xHe3).29(C2xC4) | 432,140 |
(C2×He3).30(C2×C4) = C62⋊3C12 | φ: C2×C4/C22 → C2 ⊆ Out C2×He3 | 72 | | (C2xHe3).30(C2xC4) | 432,166 |
(C2×He3).31(C2×C4) = C2×He3⋊4C8 | φ: C2×C4/C22 → C2 ⊆ Out C2×He3 | 144 | | (C2xHe3).31(C2xC4) | 432,184 |
(C2×He3).32(C2×C4) = He3⋊8M4(2) | φ: C2×C4/C22 → C2 ⊆ Out C2×He3 | 72 | 6 | (C2xHe3).32(C2xC4) | 432,185 |
(C2×He3).33(C2×C4) = C62.30D6 | φ: C2×C4/C22 → C2 ⊆ Out C2×He3 | 144 | | (C2xHe3).33(C2xC4) | 432,188 |
(C2×He3).34(C2×C4) = C62⋊4Dic3 | φ: C2×C4/C22 → C2 ⊆ Out C2×He3 | 72 | | (C2xHe3).34(C2xC4) | 432,199 |
(C2×He3).35(C2×C4) = C42×He3 | φ: trivial image | 144 | | (C2xHe3).35(C2xC4) | 432,201 |
(C2×He3).36(C2×C4) = C22⋊C4×He3 | φ: trivial image | 72 | | (C2xHe3).36(C2xC4) | 432,204 |
(C2×He3).37(C2×C4) = C4⋊C4×He3 | φ: trivial image | 144 | | (C2xHe3).37(C2xC4) | 432,207 |
(C2×He3).38(C2×C4) = C2×C8×He3 | φ: trivial image | 144 | | (C2xHe3).38(C2xC4) | 432,210 |
(C2×He3).39(C2×C4) = M4(2)×He3 | φ: trivial image | 72 | 6 | (C2xHe3).39(C2xC4) | 432,213 |