# Extensions 1→N→G→Q→1 with N=C3×Q8 and Q=C18

Direct product G=N×Q with N=C3×Q8 and Q=C18
dρLabelID
Q8×C3×C18432Q8xC3xC18432,406

Semidirect products G=N:Q with N=C3×Q8 and Q=C18
extensionφ:Q→Out NdρLabelID
(C3×Q8)⋊C18 = S3×Q8⋊C9φ: C18/C3C6 ⊆ Out C3×Q81444(C3xQ8):C18432,268
(C3×Q8)⋊2C18 = C6×Q8⋊C9φ: C18/C6C3 ⊆ Out C3×Q8432(C3xQ8):2C18432,334
(C3×Q8)⋊3C18 = C9×Q82S3φ: C18/C9C2 ⊆ Out C3×Q81444(C3xQ8):3C18432,158
(C3×Q8)⋊4C18 = S3×Q8×C9φ: C18/C9C2 ⊆ Out C3×Q81444(C3xQ8):4C18432,366
(C3×Q8)⋊5C18 = C9×Q83S3φ: C18/C9C2 ⊆ Out C3×Q81444(C3xQ8):5C18432,367
(C3×Q8)⋊6C18 = SD16×C3×C9φ: C18/C9C2 ⊆ Out C3×Q8216(C3xQ8):6C18432,218
(C3×Q8)⋊7C18 = C4○D4×C3×C9φ: trivial image216(C3xQ8):7C18432,409

Non-split extensions G=N.Q with N=C3×Q8 and Q=C18
extensionφ:Q→Out NdρLabelID
(C3×Q8).C18 = Q8⋊C93S3φ: C18/C3C6 ⊆ Out C3×Q81444(C3xQ8).C18432,267
(C3×Q8).2C18 = C2×Q8⋊C27φ: C18/C6C3 ⊆ Out C3×Q8432(C3xQ8).2C18432,41
(C3×Q8).3C18 = Q8.C54φ: C18/C6C3 ⊆ Out C3×Q82162(C3xQ8).3C18432,42
(C3×Q8).4C18 = C3×Q8.C18φ: C18/C6C3 ⊆ Out C3×Q8216(C3xQ8).4C18432,337
(C3×Q8).5C18 = C9×C3⋊Q16φ: C18/C9C2 ⊆ Out C3×Q81444(C3xQ8).5C18432,159
(C3×Q8).6C18 = SD16×C27φ: C18/C9C2 ⊆ Out C3×Q82162(C3xQ8).6C18432,26
(C3×Q8).7C18 = Q16×C27φ: C18/C9C2 ⊆ Out C3×Q84322(C3xQ8).7C18432,27
(C3×Q8).8C18 = Q16×C3×C9φ: C18/C9C2 ⊆ Out C3×Q8432(C3xQ8).8C18432,221
(C3×Q8).9C18 = Q8×C54φ: trivial image432(C3xQ8).9C18432,55
(C3×Q8).10C18 = C4○D4×C27φ: trivial image2162(C3xQ8).10C18432,56

׿
×
𝔽