# Extensions 1→N→G→Q→1 with N=C3×C9 and Q=C2×D4

Direct product G=N×Q with N=C3×C9 and Q=C2×D4
dρLabelID
D4×C3×C18216D4xC3xC18432,403

Semidirect products G=N:Q with N=C3×C9 and Q=C2×D4
extensionφ:Q→Aut NdρLabelID
(C3×C9)⋊1(C2×D4) = S3×D36φ: C2×D4/C4C22 ⊆ Aut C3×C9724+(C3xC9):1(C2xD4)432,291
(C3×C9)⋊2(C2×D4) = D9×D12φ: C2×D4/C4C22 ⊆ Aut C3×C9724+(C3xC9):2(C2xD4)432,292
(C3×C9)⋊3(C2×D4) = C36⋊D6φ: C2×D4/C4C22 ⊆ Aut C3×C9724(C3xC9):3(C2xD4)432,293
(C3×C9)⋊4(C2×D4) = C2×C3⋊D36φ: C2×D4/C22C22 ⊆ Aut C3×C972(C3xC9):4(C2xD4)432,307
(C3×C9)⋊5(C2×D4) = C2×D6⋊D9φ: C2×D4/C22C22 ⊆ Aut C3×C9144(C3xC9):5(C2xD4)432,311
(C3×C9)⋊6(C2×D4) = C2×C9⋊D12φ: C2×D4/C22C22 ⊆ Aut C3×C972(C3xC9):6(C2xD4)432,312
(C3×C9)⋊7(C2×D4) = S3×C9⋊D4φ: C2×D4/C22C22 ⊆ Aut C3×C9724(C3xC9):7(C2xD4)432,313
(C3×C9)⋊8(C2×D4) = D9×C3⋊D4φ: C2×D4/C22C22 ⊆ Aut C3×C9724(C3xC9):8(C2xD4)432,314
(C3×C9)⋊9(C2×D4) = D18⋊D6φ: C2×D4/C22C22 ⊆ Aut C3×C9364+(C3xC9):9(C2xD4)432,315
(C3×C9)⋊10(C2×D4) = C18×D12φ: C2×D4/C2×C4C2 ⊆ Aut C3×C9144(C3xC9):10(C2xD4)432,346
(C3×C9)⋊11(C2×D4) = C6×D36φ: C2×D4/C2×C4C2 ⊆ Aut C3×C9144(C3xC9):11(C2xD4)432,343
(C3×C9)⋊12(C2×D4) = C2×C36⋊S3φ: C2×D4/C2×C4C2 ⊆ Aut C3×C9216(C3xC9):12(C2xD4)432,382
(C3×C9)⋊13(C2×D4) = S3×D4×C9φ: C2×D4/D4C2 ⊆ Aut C3×C9724(C3xC9):13(C2xD4)432,358
(C3×C9)⋊14(C2×D4) = C3×D4×D9φ: C2×D4/D4C2 ⊆ Aut C3×C9724(C3xC9):14(C2xD4)432,356
(C3×C9)⋊15(C2×D4) = D4×C9⋊S3φ: C2×D4/D4C2 ⊆ Aut C3×C9108(C3xC9):15(C2xD4)432,388
(C3×C9)⋊16(C2×D4) = C18×C3⋊D4φ: C2×D4/C23C2 ⊆ Aut C3×C972(C3xC9):16(C2xD4)432,375
(C3×C9)⋊17(C2×D4) = C6×C9⋊D4φ: C2×D4/C23C2 ⊆ Aut C3×C972(C3xC9):17(C2xD4)432,374
(C3×C9)⋊18(C2×D4) = C2×C6.D18φ: C2×D4/C23C2 ⊆ Aut C3×C9216(C3xC9):18(C2xD4)432,397

׿
×
𝔽