# Extensions 1→N→G→Q→1 with N=C3×C9 and Q=C2×Q8

Direct product G=N×Q with N=C3×C9 and Q=C2×Q8
dρLabelID
Q8×C3×C18432Q8xC3xC18432,406

Semidirect products G=N:Q with N=C3×C9 and Q=C2×Q8
extensionφ:Q→Aut NdρLabelID
(C3×C9)⋊1(C2×Q8) = D9×Dic6φ: C2×Q8/C4C22 ⊆ Aut C3×C91444-(C3xC9):1(C2xQ8)432,280
(C3×C9)⋊2(C2×Q8) = Dic18⋊S3φ: C2×Q8/C4C22 ⊆ Aut C3×C9724(C3xC9):2(C2xQ8)432,283
(C3×C9)⋊3(C2×Q8) = S3×Dic18φ: C2×Q8/C4C22 ⊆ Aut C3×C91444-(C3xC9):3(C2xQ8)432,284
(C3×C9)⋊4(C2×Q8) = C2×C9⋊Dic6φ: C2×Q8/C22C22 ⊆ Aut C3×C9144(C3xC9):4(C2xQ8)432,303
(C3×C9)⋊5(C2×Q8) = C18×Dic6φ: C2×Q8/C2×C4C2 ⊆ Aut C3×C9144(C3xC9):5(C2xQ8)432,341
(C3×C9)⋊6(C2×Q8) = C6×Dic18φ: C2×Q8/C2×C4C2 ⊆ Aut C3×C9144(C3xC9):6(C2xQ8)432,340
(C3×C9)⋊7(C2×Q8) = C2×C12.D9φ: C2×Q8/C2×C4C2 ⊆ Aut C3×C9432(C3xC9):7(C2xQ8)432,380
(C3×C9)⋊8(C2×Q8) = S3×Q8×C9φ: C2×Q8/Q8C2 ⊆ Aut C3×C91444(C3xC9):8(C2xQ8)432,366
(C3×C9)⋊9(C2×Q8) = C3×Q8×D9φ: C2×Q8/Q8C2 ⊆ Aut C3×C91444(C3xC9):9(C2xQ8)432,364
(C3×C9)⋊10(C2×Q8) = Q8×C9⋊S3φ: C2×Q8/Q8C2 ⊆ Aut C3×C9216(C3xC9):10(C2xQ8)432,392

׿
×
𝔽