Extensions 1→N→G→Q→1 with N=C8xHe3 and Q=C2

Direct product G=NxQ with N=C8xHe3 and Q=C2
dρLabelID
C2xC8xHe3144C2xC8xHe3432,210

Semidirect products G=N:Q with N=C8xHe3 and Q=C2
extensionφ:Q→Out NdρLabelID
(C8xHe3):1C2 = He3:4D8φ: C2/C1C2 ⊆ Out C8xHe3726+(C8xHe3):1C2432,118
(C8xHe3):2C2 = He3:5D8φ: C2/C1C2 ⊆ Out C8xHe3726(C8xHe3):2C2432,176
(C8xHe3):3C2 = He3:6SD16φ: C2/C1C2 ⊆ Out C8xHe3726(C8xHe3):3C2432,117
(C8xHe3):4C2 = He3:7SD16φ: C2/C1C2 ⊆ Out C8xHe3726(C8xHe3):4C2432,175
(C8xHe3):5C2 = D8xHe3φ: C2/C1C2 ⊆ Out C8xHe3726(C8xHe3):5C2432,216
(C8xHe3):6C2 = C8xC32:C6φ: C2/C1C2 ⊆ Out C8xHe3726(C8xHe3):6C2432,115
(C8xHe3):7C2 = C8xHe3:C2φ: C2/C1C2 ⊆ Out C8xHe3723(C8xHe3):7C2432,173
(C8xHe3):8C2 = He3:5M4(2)φ: C2/C1C2 ⊆ Out C8xHe3726(C8xHe3):8C2432,116
(C8xHe3):9C2 = He3:6M4(2)φ: C2/C1C2 ⊆ Out C8xHe3726(C8xHe3):9C2432,174
(C8xHe3):10C2 = SD16xHe3φ: C2/C1C2 ⊆ Out C8xHe3726(C8xHe3):10C2432,219
(C8xHe3):11C2 = M4(2)xHe3φ: C2/C1C2 ⊆ Out C8xHe3726(C8xHe3):11C2432,213

Non-split extensions G=N.Q with N=C8xHe3 and Q=C2
extensionφ:Q→Out NdρLabelID
(C8xHe3).1C2 = He3:4Q16φ: C2/C1C2 ⊆ Out C8xHe31446-(C8xHe3).1C2432,114
(C8xHe3).2C2 = He3:5Q16φ: C2/C1C2 ⊆ Out C8xHe31446(C8xHe3).2C2432,177
(C8xHe3).3C2 = Q16xHe3φ: C2/C1C2 ⊆ Out C8xHe31446(C8xHe3).3C2432,222
(C8xHe3).4C2 = He3:3C16φ: C2/C1C2 ⊆ Out C8xHe31446(C8xHe3).4C2432,30
(C8xHe3).5C2 = He3:4C16φ: C2/C1C2 ⊆ Out C8xHe31443(C8xHe3).5C2432,33
(C8xHe3).6C2 = C16xHe3φ: trivial image1443(C8xHe3).6C2432,35

׿
x
:
Z
F
o
wr
Q
<