Copied to
clipboard

G = He34Q16order 432 = 24·33

1st semidirect product of He3 and Q16 acting via Q16/C8=C2

metabelian, supersoluble, monomial

Aliases: He34Q16, C323Dic12, C325Q16⋊C3, C24.3(C3×S3), (C3×C24).1C6, (C3×C24).1S3, C8.(C32⋊C6), C6.4(C3×D12), C12.67(S3×C6), (C3×C12).40D6, (C3×C6).13D12, (C8×He3).1C2, C322(C3×Q16), (C2×He3).17D4, He33Q8.4C2, C3.2(C3×Dic12), C324Q8.1C6, C2.3(He34D4), (C4×He3).32C22, (C3×C6).6(C3×D4), (C3×C12).8(C2×C6), C4.8(C2×C32⋊C6), SmallGroup(432,114)

Series: Derived Chief Lower central Upper central

C1C3×C12 — He34Q16
C1C3C32C3×C6C3×C12C4×He3He33Q8 — He34Q16
C32C3×C6C3×C12 — He34Q16
C1C2C4C8

Generators and relations for He34Q16
 G = < a,b,c,d,e | a3=b3=c3=d8=1, e2=d4, ab=ba, cac-1=ab-1, ad=da, eae-1=a-1, bc=cb, bd=db, ebe-1=b-1, cd=dc, ce=ec, ede-1=d-1 >

Subgroups: 321 in 71 conjugacy classes, 26 normal (22 characteristic)
C1, C2, C3, C3, C4, C4, C6, C6, C8, Q8, C32, C32, Dic3, C12, C12, Q16, C3×C6, C3×C6, C24, C24, Dic6, C3×Q8, He3, C3×Dic3, C3⋊Dic3, C3×C12, C3×C12, Dic12, C3×Q16, C2×He3, C3×C24, C3×C24, C3×Dic6, C324Q8, C32⋊C12, C4×He3, C3×Dic12, C325Q16, C8×He3, He33Q8, He34Q16
Quotients: C1, C2, C3, C22, S3, C6, D4, D6, C2×C6, Q16, C3×S3, D12, C3×D4, S3×C6, Dic12, C3×Q16, C32⋊C6, C3×D12, C2×C32⋊C6, C3×Dic12, He34D4, He34Q16

Smallest permutation representation of He34Q16
On 144 points
Generators in S144
(9 131 122)(10 132 123)(11 133 124)(12 134 125)(13 135 126)(14 136 127)(15 129 128)(16 130 121)(25 51 78)(26 52 79)(27 53 80)(28 54 73)(29 55 74)(30 56 75)(31 49 76)(32 50 77)(33 46 105)(34 47 106)(35 48 107)(36 41 108)(37 42 109)(38 43 110)(39 44 111)(40 45 112)(57 89 116)(58 90 117)(59 91 118)(60 92 119)(61 93 120)(62 94 113)(63 95 114)(64 96 115)
(1 67 17)(2 68 18)(3 69 19)(4 70 20)(5 71 21)(6 72 22)(7 65 23)(8 66 24)(9 131 122)(10 132 123)(11 133 124)(12 134 125)(13 135 126)(14 136 127)(15 129 128)(16 130 121)(25 51 78)(26 52 79)(27 53 80)(28 54 73)(29 55 74)(30 56 75)(31 49 76)(32 50 77)(33 105 46)(34 106 47)(35 107 48)(36 108 41)(37 109 42)(38 110 43)(39 111 44)(40 112 45)(57 116 89)(58 117 90)(59 118 91)(60 119 92)(61 120 93)(62 113 94)(63 114 95)(64 115 96)(81 142 98)(82 143 99)(83 144 100)(84 137 101)(85 138 102)(86 139 103)(87 140 104)(88 141 97)
(1 117 32)(2 118 25)(3 119 26)(4 120 27)(5 113 28)(6 114 29)(7 115 30)(8 116 31)(9 86 105)(10 87 106)(11 88 107)(12 81 108)(13 82 109)(14 83 110)(15 84 111)(16 85 112)(17 58 77)(18 59 78)(19 60 79)(20 61 80)(21 62 73)(22 63 74)(23 64 75)(24 57 76)(33 122 103)(34 123 104)(35 124 97)(36 125 98)(37 126 99)(38 127 100)(39 128 101)(40 121 102)(41 134 142)(42 135 143)(43 136 144)(44 129 137)(45 130 138)(46 131 139)(47 132 140)(48 133 141)(49 66 89)(50 67 90)(51 68 91)(52 69 92)(53 70 93)(54 71 94)(55 72 95)(56 65 96)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128)(129 130 131 132 133 134 135 136)(137 138 139 140 141 142 143 144)
(1 101 5 97)(2 100 6 104)(3 99 7 103)(4 98 8 102)(9 79 13 75)(10 78 14 74)(11 77 15 73)(12 76 16 80)(17 84 21 88)(18 83 22 87)(19 82 23 86)(20 81 24 85)(25 127 29 123)(26 126 30 122)(27 125 31 121)(28 124 32 128)(33 119 37 115)(34 118 38 114)(35 117 39 113)(36 116 40 120)(41 89 45 93)(42 96 46 92)(43 95 47 91)(44 94 48 90)(49 130 53 134)(50 129 54 133)(51 136 55 132)(52 135 56 131)(57 112 61 108)(58 111 62 107)(59 110 63 106)(60 109 64 105)(65 139 69 143)(66 138 70 142)(67 137 71 141)(68 144 72 140)

G:=sub<Sym(144)| (9,131,122)(10,132,123)(11,133,124)(12,134,125)(13,135,126)(14,136,127)(15,129,128)(16,130,121)(25,51,78)(26,52,79)(27,53,80)(28,54,73)(29,55,74)(30,56,75)(31,49,76)(32,50,77)(33,46,105)(34,47,106)(35,48,107)(36,41,108)(37,42,109)(38,43,110)(39,44,111)(40,45,112)(57,89,116)(58,90,117)(59,91,118)(60,92,119)(61,93,120)(62,94,113)(63,95,114)(64,96,115), (1,67,17)(2,68,18)(3,69,19)(4,70,20)(5,71,21)(6,72,22)(7,65,23)(8,66,24)(9,131,122)(10,132,123)(11,133,124)(12,134,125)(13,135,126)(14,136,127)(15,129,128)(16,130,121)(25,51,78)(26,52,79)(27,53,80)(28,54,73)(29,55,74)(30,56,75)(31,49,76)(32,50,77)(33,105,46)(34,106,47)(35,107,48)(36,108,41)(37,109,42)(38,110,43)(39,111,44)(40,112,45)(57,116,89)(58,117,90)(59,118,91)(60,119,92)(61,120,93)(62,113,94)(63,114,95)(64,115,96)(81,142,98)(82,143,99)(83,144,100)(84,137,101)(85,138,102)(86,139,103)(87,140,104)(88,141,97), (1,117,32)(2,118,25)(3,119,26)(4,120,27)(5,113,28)(6,114,29)(7,115,30)(8,116,31)(9,86,105)(10,87,106)(11,88,107)(12,81,108)(13,82,109)(14,83,110)(15,84,111)(16,85,112)(17,58,77)(18,59,78)(19,60,79)(20,61,80)(21,62,73)(22,63,74)(23,64,75)(24,57,76)(33,122,103)(34,123,104)(35,124,97)(36,125,98)(37,126,99)(38,127,100)(39,128,101)(40,121,102)(41,134,142)(42,135,143)(43,136,144)(44,129,137)(45,130,138)(46,131,139)(47,132,140)(48,133,141)(49,66,89)(50,67,90)(51,68,91)(52,69,92)(53,70,93)(54,71,94)(55,72,95)(56,65,96), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144), (1,101,5,97)(2,100,6,104)(3,99,7,103)(4,98,8,102)(9,79,13,75)(10,78,14,74)(11,77,15,73)(12,76,16,80)(17,84,21,88)(18,83,22,87)(19,82,23,86)(20,81,24,85)(25,127,29,123)(26,126,30,122)(27,125,31,121)(28,124,32,128)(33,119,37,115)(34,118,38,114)(35,117,39,113)(36,116,40,120)(41,89,45,93)(42,96,46,92)(43,95,47,91)(44,94,48,90)(49,130,53,134)(50,129,54,133)(51,136,55,132)(52,135,56,131)(57,112,61,108)(58,111,62,107)(59,110,63,106)(60,109,64,105)(65,139,69,143)(66,138,70,142)(67,137,71,141)(68,144,72,140)>;

G:=Group( (9,131,122)(10,132,123)(11,133,124)(12,134,125)(13,135,126)(14,136,127)(15,129,128)(16,130,121)(25,51,78)(26,52,79)(27,53,80)(28,54,73)(29,55,74)(30,56,75)(31,49,76)(32,50,77)(33,46,105)(34,47,106)(35,48,107)(36,41,108)(37,42,109)(38,43,110)(39,44,111)(40,45,112)(57,89,116)(58,90,117)(59,91,118)(60,92,119)(61,93,120)(62,94,113)(63,95,114)(64,96,115), (1,67,17)(2,68,18)(3,69,19)(4,70,20)(5,71,21)(6,72,22)(7,65,23)(8,66,24)(9,131,122)(10,132,123)(11,133,124)(12,134,125)(13,135,126)(14,136,127)(15,129,128)(16,130,121)(25,51,78)(26,52,79)(27,53,80)(28,54,73)(29,55,74)(30,56,75)(31,49,76)(32,50,77)(33,105,46)(34,106,47)(35,107,48)(36,108,41)(37,109,42)(38,110,43)(39,111,44)(40,112,45)(57,116,89)(58,117,90)(59,118,91)(60,119,92)(61,120,93)(62,113,94)(63,114,95)(64,115,96)(81,142,98)(82,143,99)(83,144,100)(84,137,101)(85,138,102)(86,139,103)(87,140,104)(88,141,97), (1,117,32)(2,118,25)(3,119,26)(4,120,27)(5,113,28)(6,114,29)(7,115,30)(8,116,31)(9,86,105)(10,87,106)(11,88,107)(12,81,108)(13,82,109)(14,83,110)(15,84,111)(16,85,112)(17,58,77)(18,59,78)(19,60,79)(20,61,80)(21,62,73)(22,63,74)(23,64,75)(24,57,76)(33,122,103)(34,123,104)(35,124,97)(36,125,98)(37,126,99)(38,127,100)(39,128,101)(40,121,102)(41,134,142)(42,135,143)(43,136,144)(44,129,137)(45,130,138)(46,131,139)(47,132,140)(48,133,141)(49,66,89)(50,67,90)(51,68,91)(52,69,92)(53,70,93)(54,71,94)(55,72,95)(56,65,96), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144), (1,101,5,97)(2,100,6,104)(3,99,7,103)(4,98,8,102)(9,79,13,75)(10,78,14,74)(11,77,15,73)(12,76,16,80)(17,84,21,88)(18,83,22,87)(19,82,23,86)(20,81,24,85)(25,127,29,123)(26,126,30,122)(27,125,31,121)(28,124,32,128)(33,119,37,115)(34,118,38,114)(35,117,39,113)(36,116,40,120)(41,89,45,93)(42,96,46,92)(43,95,47,91)(44,94,48,90)(49,130,53,134)(50,129,54,133)(51,136,55,132)(52,135,56,131)(57,112,61,108)(58,111,62,107)(59,110,63,106)(60,109,64,105)(65,139,69,143)(66,138,70,142)(67,137,71,141)(68,144,72,140) );

G=PermutationGroup([[(9,131,122),(10,132,123),(11,133,124),(12,134,125),(13,135,126),(14,136,127),(15,129,128),(16,130,121),(25,51,78),(26,52,79),(27,53,80),(28,54,73),(29,55,74),(30,56,75),(31,49,76),(32,50,77),(33,46,105),(34,47,106),(35,48,107),(36,41,108),(37,42,109),(38,43,110),(39,44,111),(40,45,112),(57,89,116),(58,90,117),(59,91,118),(60,92,119),(61,93,120),(62,94,113),(63,95,114),(64,96,115)], [(1,67,17),(2,68,18),(3,69,19),(4,70,20),(5,71,21),(6,72,22),(7,65,23),(8,66,24),(9,131,122),(10,132,123),(11,133,124),(12,134,125),(13,135,126),(14,136,127),(15,129,128),(16,130,121),(25,51,78),(26,52,79),(27,53,80),(28,54,73),(29,55,74),(30,56,75),(31,49,76),(32,50,77),(33,105,46),(34,106,47),(35,107,48),(36,108,41),(37,109,42),(38,110,43),(39,111,44),(40,112,45),(57,116,89),(58,117,90),(59,118,91),(60,119,92),(61,120,93),(62,113,94),(63,114,95),(64,115,96),(81,142,98),(82,143,99),(83,144,100),(84,137,101),(85,138,102),(86,139,103),(87,140,104),(88,141,97)], [(1,117,32),(2,118,25),(3,119,26),(4,120,27),(5,113,28),(6,114,29),(7,115,30),(8,116,31),(9,86,105),(10,87,106),(11,88,107),(12,81,108),(13,82,109),(14,83,110),(15,84,111),(16,85,112),(17,58,77),(18,59,78),(19,60,79),(20,61,80),(21,62,73),(22,63,74),(23,64,75),(24,57,76),(33,122,103),(34,123,104),(35,124,97),(36,125,98),(37,126,99),(38,127,100),(39,128,101),(40,121,102),(41,134,142),(42,135,143),(43,136,144),(44,129,137),(45,130,138),(46,131,139),(47,132,140),(48,133,141),(49,66,89),(50,67,90),(51,68,91),(52,69,92),(53,70,93),(54,71,94),(55,72,95),(56,65,96)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128),(129,130,131,132,133,134,135,136),(137,138,139,140,141,142,143,144)], [(1,101,5,97),(2,100,6,104),(3,99,7,103),(4,98,8,102),(9,79,13,75),(10,78,14,74),(11,77,15,73),(12,76,16,80),(17,84,21,88),(18,83,22,87),(19,82,23,86),(20,81,24,85),(25,127,29,123),(26,126,30,122),(27,125,31,121),(28,124,32,128),(33,119,37,115),(34,118,38,114),(35,117,39,113),(36,116,40,120),(41,89,45,93),(42,96,46,92),(43,95,47,91),(44,94,48,90),(49,130,53,134),(50,129,54,133),(51,136,55,132),(52,135,56,131),(57,112,61,108),(58,111,62,107),(59,110,63,106),(60,109,64,105),(65,139,69,143),(66,138,70,142),(67,137,71,141),(68,144,72,140)]])

53 conjugacy classes

class 1  2 3A3B3C3D3E3F4A4B4C6A6B6C6D6E6F8A8B12A12B12C···12J12K12L12M12N24A24B24C24D24E···24T
order1233333344466666688121212···12121212122424242424···24
size112336662363623366622226···63636363622226···6

53 irreducible representations

dim1111112222222222226666
type++++++-+-+++-
imageC1C2C2C3C6C6S3D4D6Q16C3×S3D12C3×D4S3×C6Dic12C3×Q16C3×D12C3×Dic12C32⋊C6C2×C32⋊C6He34D4He34Q16
kernelHe34Q16C8×He3He33Q8C325Q16C3×C24C324Q8C3×C24C2×He3C3×C12He3C24C3×C6C3×C6C12C32C32C6C3C8C4C2C1
# reps1122241112222244481124

Matrix representation of He34Q16 in GL8(𝔽73)

072000000
172000000
00100000
00010000
000072100
000072000
000000072
000000172
,
10000000
01000000
007210000
007200000
000072100
000072000
000000721
000000720
,
80000000
08000000
00001000
00000100
00000010
00000001
00100000
00010000
,
185000000
6823000000
007200000
000720000
000072000
000007200
000000720
000000072
,
2263000000
1251000000
0014660000
007590000
0000146600
000075900
0000001466
000000759

G:=sub<GL(8,GF(73))| [0,1,0,0,0,0,0,0,72,72,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,72,72,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,72,72],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,72,72,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,72,72,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,72,72,0,0,0,0,0,0,1,0],[8,0,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0],[18,68,0,0,0,0,0,0,5,23,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,72],[22,12,0,0,0,0,0,0,63,51,0,0,0,0,0,0,0,0,14,7,0,0,0,0,0,0,66,59,0,0,0,0,0,0,0,0,14,7,0,0,0,0,0,0,66,59,0,0,0,0,0,0,0,0,14,7,0,0,0,0,0,0,66,59] >;

He34Q16 in GAP, Magma, Sage, TeX

{\rm He}_3\rtimes_4Q_{16}
% in TeX

G:=Group("He3:4Q16");
// GroupNames label

G:=SmallGroup(432,114);
// by ID

G=gap.SmallGroup(432,114);
# by ID

G:=PCGroup([7,-2,-2,-3,-2,-2,-3,-3,168,197,260,1011,80,4037,2035,14118]);
// Polycyclic

G:=Group<a,b,c,d,e|a^3=b^3=c^3=d^8=1,e^2=d^4,a*b=b*a,c*a*c^-1=a*b^-1,a*d=d*a,e*a*e^-1=a^-1,b*c=c*b,b*d=d*b,e*b*e^-1=b^-1,c*d=d*c,c*e=e*c,e*d*e^-1=d^-1>;
// generators/relations

׿
×
𝔽