Copied to
clipboard

G = He33C16order 432 = 24·33

1st semidirect product of He3 and C16 acting via C16/C8=C2

metabelian, supersoluble, monomial

Aliases: He33C16, C322C48, C24.S3⋊C3, (C3×C6).2C24, (C3×C24).5C6, (C3×C24).6S3, C24.15(C3×S3), C322(C3⋊C16), (C3×C12).2C12, C2.(He33C8), (C4×He3).6C4, (C8×He3).4C2, (C2×He3).3C8, C8.2(C32⋊C6), (C3×C12).5Dic3, C12.9(C3×Dic3), C4.2(C32⋊C12), C6.2(C3×C3⋊C8), C3.2(C3×C3⋊C16), (C3×C6).2(C3⋊C8), SmallGroup(432,30)

Series: Derived Chief Lower central Upper central

C1C32 — He33C16
C1C3C32C3×C6C3×C12C3×C24C8×He3 — He33C16
C32 — He33C16
C1C8

Generators and relations for He33C16
 G = < a,b,c,d | a3=b3=c3=d16=1, ab=ba, cac-1=ab-1, dad-1=a-1, bc=cb, dbd-1=b-1, cd=dc >

3C3
3C3
6C3
3C6
3C6
6C6
2C32
3C12
3C12
6C12
2C3×C6
9C16
3C24
3C24
6C24
2C3×C12
3C3⋊C16
9C48
9C3⋊C16
2C3×C24
3C3×C3⋊C16

Smallest permutation representation of He33C16
On 144 points
Generators in S144
(1 51 39)(2 40 52)(3 53 41)(4 42 54)(5 55 43)(6 44 56)(7 57 45)(8 46 58)(9 59 47)(10 48 60)(11 61 33)(12 34 62)(13 63 35)(14 36 64)(15 49 37)(16 38 50)(17 116 77)(18 78 117)(19 118 79)(20 80 119)(21 120 65)(22 66 121)(23 122 67)(24 68 123)(25 124 69)(26 70 125)(27 126 71)(28 72 127)(29 128 73)(30 74 113)(31 114 75)(32 76 115)(81 106 135)(82 136 107)(83 108 137)(84 138 109)(85 110 139)(86 140 111)(87 112 141)(88 142 97)(89 98 143)(90 144 99)(91 100 129)(92 130 101)(93 102 131)(94 132 103)(95 104 133)(96 134 105)
(1 97 76)(2 77 98)(3 99 78)(4 79 100)(5 101 80)(6 65 102)(7 103 66)(8 67 104)(9 105 68)(10 69 106)(11 107 70)(12 71 108)(13 109 72)(14 73 110)(15 111 74)(16 75 112)(17 143 40)(18 41 144)(19 129 42)(20 43 130)(21 131 44)(22 45 132)(23 133 46)(24 47 134)(25 135 48)(26 33 136)(27 137 34)(28 35 138)(29 139 36)(30 37 140)(31 141 38)(32 39 142)(49 86 113)(50 114 87)(51 88 115)(52 116 89)(53 90 117)(54 118 91)(55 92 119)(56 120 93)(57 94 121)(58 122 95)(59 96 123)(60 124 81)(61 82 125)(62 126 83)(63 84 127)(64 128 85)
(17 143 40)(18 144 41)(19 129 42)(20 130 43)(21 131 44)(22 132 45)(23 133 46)(24 134 47)(25 135 48)(26 136 33)(27 137 34)(28 138 35)(29 139 36)(30 140 37)(31 141 38)(32 142 39)(49 86 113)(50 87 114)(51 88 115)(52 89 116)(53 90 117)(54 91 118)(55 92 119)(56 93 120)(57 94 121)(58 95 122)(59 96 123)(60 81 124)(61 82 125)(62 83 126)(63 84 127)(64 85 128)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128)(129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144)

G:=sub<Sym(144)| (1,51,39)(2,40,52)(3,53,41)(4,42,54)(5,55,43)(6,44,56)(7,57,45)(8,46,58)(9,59,47)(10,48,60)(11,61,33)(12,34,62)(13,63,35)(14,36,64)(15,49,37)(16,38,50)(17,116,77)(18,78,117)(19,118,79)(20,80,119)(21,120,65)(22,66,121)(23,122,67)(24,68,123)(25,124,69)(26,70,125)(27,126,71)(28,72,127)(29,128,73)(30,74,113)(31,114,75)(32,76,115)(81,106,135)(82,136,107)(83,108,137)(84,138,109)(85,110,139)(86,140,111)(87,112,141)(88,142,97)(89,98,143)(90,144,99)(91,100,129)(92,130,101)(93,102,131)(94,132,103)(95,104,133)(96,134,105), (1,97,76)(2,77,98)(3,99,78)(4,79,100)(5,101,80)(6,65,102)(7,103,66)(8,67,104)(9,105,68)(10,69,106)(11,107,70)(12,71,108)(13,109,72)(14,73,110)(15,111,74)(16,75,112)(17,143,40)(18,41,144)(19,129,42)(20,43,130)(21,131,44)(22,45,132)(23,133,46)(24,47,134)(25,135,48)(26,33,136)(27,137,34)(28,35,138)(29,139,36)(30,37,140)(31,141,38)(32,39,142)(49,86,113)(50,114,87)(51,88,115)(52,116,89)(53,90,117)(54,118,91)(55,92,119)(56,120,93)(57,94,121)(58,122,95)(59,96,123)(60,124,81)(61,82,125)(62,126,83)(63,84,127)(64,128,85), (17,143,40)(18,144,41)(19,129,42)(20,130,43)(21,131,44)(22,132,45)(23,133,46)(24,134,47)(25,135,48)(26,136,33)(27,137,34)(28,138,35)(29,139,36)(30,140,37)(31,141,38)(32,142,39)(49,86,113)(50,87,114)(51,88,115)(52,89,116)(53,90,117)(54,91,118)(55,92,119)(56,93,120)(57,94,121)(58,95,122)(59,96,123)(60,81,124)(61,82,125)(62,83,126)(63,84,127)(64,85,128), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144)>;

G:=Group( (1,51,39)(2,40,52)(3,53,41)(4,42,54)(5,55,43)(6,44,56)(7,57,45)(8,46,58)(9,59,47)(10,48,60)(11,61,33)(12,34,62)(13,63,35)(14,36,64)(15,49,37)(16,38,50)(17,116,77)(18,78,117)(19,118,79)(20,80,119)(21,120,65)(22,66,121)(23,122,67)(24,68,123)(25,124,69)(26,70,125)(27,126,71)(28,72,127)(29,128,73)(30,74,113)(31,114,75)(32,76,115)(81,106,135)(82,136,107)(83,108,137)(84,138,109)(85,110,139)(86,140,111)(87,112,141)(88,142,97)(89,98,143)(90,144,99)(91,100,129)(92,130,101)(93,102,131)(94,132,103)(95,104,133)(96,134,105), (1,97,76)(2,77,98)(3,99,78)(4,79,100)(5,101,80)(6,65,102)(7,103,66)(8,67,104)(9,105,68)(10,69,106)(11,107,70)(12,71,108)(13,109,72)(14,73,110)(15,111,74)(16,75,112)(17,143,40)(18,41,144)(19,129,42)(20,43,130)(21,131,44)(22,45,132)(23,133,46)(24,47,134)(25,135,48)(26,33,136)(27,137,34)(28,35,138)(29,139,36)(30,37,140)(31,141,38)(32,39,142)(49,86,113)(50,114,87)(51,88,115)(52,116,89)(53,90,117)(54,118,91)(55,92,119)(56,120,93)(57,94,121)(58,122,95)(59,96,123)(60,124,81)(61,82,125)(62,126,83)(63,84,127)(64,128,85), (17,143,40)(18,144,41)(19,129,42)(20,130,43)(21,131,44)(22,132,45)(23,133,46)(24,134,47)(25,135,48)(26,136,33)(27,137,34)(28,138,35)(29,139,36)(30,140,37)(31,141,38)(32,142,39)(49,86,113)(50,87,114)(51,88,115)(52,89,116)(53,90,117)(54,91,118)(55,92,119)(56,93,120)(57,94,121)(58,95,122)(59,96,123)(60,81,124)(61,82,125)(62,83,126)(63,84,127)(64,85,128), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144) );

G=PermutationGroup([[(1,51,39),(2,40,52),(3,53,41),(4,42,54),(5,55,43),(6,44,56),(7,57,45),(8,46,58),(9,59,47),(10,48,60),(11,61,33),(12,34,62),(13,63,35),(14,36,64),(15,49,37),(16,38,50),(17,116,77),(18,78,117),(19,118,79),(20,80,119),(21,120,65),(22,66,121),(23,122,67),(24,68,123),(25,124,69),(26,70,125),(27,126,71),(28,72,127),(29,128,73),(30,74,113),(31,114,75),(32,76,115),(81,106,135),(82,136,107),(83,108,137),(84,138,109),(85,110,139),(86,140,111),(87,112,141),(88,142,97),(89,98,143),(90,144,99),(91,100,129),(92,130,101),(93,102,131),(94,132,103),(95,104,133),(96,134,105)], [(1,97,76),(2,77,98),(3,99,78),(4,79,100),(5,101,80),(6,65,102),(7,103,66),(8,67,104),(9,105,68),(10,69,106),(11,107,70),(12,71,108),(13,109,72),(14,73,110),(15,111,74),(16,75,112),(17,143,40),(18,41,144),(19,129,42),(20,43,130),(21,131,44),(22,45,132),(23,133,46),(24,47,134),(25,135,48),(26,33,136),(27,137,34),(28,35,138),(29,139,36),(30,37,140),(31,141,38),(32,39,142),(49,86,113),(50,114,87),(51,88,115),(52,116,89),(53,90,117),(54,118,91),(55,92,119),(56,120,93),(57,94,121),(58,122,95),(59,96,123),(60,124,81),(61,82,125),(62,126,83),(63,84,127),(64,128,85)], [(17,143,40),(18,144,41),(19,129,42),(20,130,43),(21,131,44),(22,132,45),(23,133,46),(24,134,47),(25,135,48),(26,136,33),(27,137,34),(28,138,35),(29,139,36),(30,140,37),(31,141,38),(32,142,39),(49,86,113),(50,87,114),(51,88,115),(52,89,116),(53,90,117),(54,91,118),(55,92,119),(56,93,120),(57,94,121),(58,95,122),(59,96,123),(60,81,124),(61,82,125),(62,83,126),(63,84,127),(64,85,128)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128),(129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144)]])

80 conjugacy classes

class 1  2 3A3B3C3D3E3F4A4B6A6B6C6D6E6F8A8B8C8D12A12B12C12D12E12F12G···12L16A···16H24A24B24C24D24E···24L24M···24X48A···48P
order1233333344666666888812121212121212···1216···162424242424···2424···2448···48
size112336661123366611112233336···69···922223···36···69···9

80 irreducible representations

dim1111111111222222226666
type+++-+-
imageC1C2C3C4C6C8C12C16C24C48S3Dic3C3×S3C3⋊C8C3×Dic3C3⋊C16C3×C3⋊C8C3×C3⋊C16C32⋊C6C32⋊C12He33C8He33C16
kernelHe33C16C8×He3C24.S3C4×He3C3×C24C2×He3C3×C12He3C3×C6C32C3×C24C3×C12C24C3×C6C12C32C6C3C8C4C2C1
# reps11222448816112224481124

Matrix representation of He33C16 in GL6(𝔽97)

001000
000100
000010
000001
100000
010000
,
9610000
9600000
0096100
0096000
0000961
0000960
,
100000
010000
0009600
0019600
0000961
0000960
,
8900000
8980000
0000890
0000898
0089000
0089800

G:=sub<GL(6,GF(97))| [0,0,0,0,1,0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0],[96,96,0,0,0,0,1,0,0,0,0,0,0,0,96,96,0,0,0,0,1,0,0,0,0,0,0,0,96,96,0,0,0,0,1,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,96,96,0,0,0,0,0,0,96,96,0,0,0,0,1,0],[89,89,0,0,0,0,0,8,0,0,0,0,0,0,0,0,89,89,0,0,0,0,0,8,0,0,89,89,0,0,0,0,0,8,0,0] >;

He33C16 in GAP, Magma, Sage, TeX

{\rm He}_3\rtimes_3C_{16}
% in TeX

G:=Group("He3:3C16");
// GroupNames label

G:=SmallGroup(432,30);
// by ID

G=gap.SmallGroup(432,30);
# by ID

G:=PCGroup([7,-2,-3,-2,-2,-2,-3,-3,42,58,80,4037,4044,14118]);
// Polycyclic

G:=Group<a,b,c,d|a^3=b^3=c^3=d^16=1,a*b=b*a,c*a*c^-1=a*b^-1,d*a*d^-1=a^-1,b*c=c*b,d*b*d^-1=b^-1,c*d=d*c>;
// generators/relations

Export

Subgroup lattice of He33C16 in TeX

׿
×
𝔽