Copied to
clipboard

G = He36SD16order 432 = 24·33

1st semidirect product of He3 and SD16 acting via SD16/C8=C2

metabelian, supersoluble, monomial

Aliases: He36SD16, C242S3⋊C3, (C3×C24)⋊3S3, (C3×C24)⋊2C6, C24.9(C3×S3), (C8×He3)⋊3C2, C6.5(C3×D12), C12.68(S3×C6), C82(C32⋊C6), (C3×C12).41D6, (C3×C6).14D12, C324Q81C6, C12⋊S3.1C6, He33Q810C2, (C2×He3).18D4, He34D4.4C2, C323(C3×SD16), C325(C24⋊C2), C2.4(He34D4), (C4×He3).33C22, (C3×C6).7(C3×D4), C3.2(C3×C24⋊C2), (C3×C12).9(C2×C6), C4.9(C2×C32⋊C6), SmallGroup(432,117)

Series: Derived Chief Lower central Upper central

C1C3×C12 — He36SD16
C1C3C32C3×C6C3×C12C4×He3He34D4 — He36SD16
C32C3×C6C3×C12 — He36SD16
C1C2C4C8

Generators and relations for He36SD16
 G = < a,b,c,d,e | a3=b3=c3=d8=e2=1, ab=ba, cac-1=ab-1, ad=da, eae=a-1, bc=cb, bd=db, ebe=b-1, cd=dc, ce=ec, ede=d3 >

Subgroups: 461 in 78 conjugacy classes, 26 normal (all characteristic)
C1, C2, C2, C3, C3, C4, C4, C22, S3, C6, C6, C8, D4, Q8, C32, C32, Dic3, C12, C12, D6, C2×C6, SD16, C3×S3, C3⋊S3, C3×C6, C3×C6, C24, C24, Dic6, D12, C3×D4, C3×Q8, He3, C3×Dic3, C3⋊Dic3, C3×C12, C3×C12, S3×C6, C2×C3⋊S3, C24⋊C2, C3×SD16, C32⋊C6, C2×He3, C3×C24, C3×C24, C3×Dic6, C3×D12, C324Q8, C12⋊S3, C32⋊C12, C4×He3, C2×C32⋊C6, C3×C24⋊C2, C242S3, C8×He3, He33Q8, He34D4, He36SD16
Quotients: C1, C2, C3, C22, S3, C6, D4, D6, C2×C6, SD16, C3×S3, D12, C3×D4, S3×C6, C24⋊C2, C3×SD16, C32⋊C6, C3×D12, C2×C32⋊C6, C3×C24⋊C2, He34D4, He36SD16

Smallest permutation representation of He36SD16
On 72 points
Generators in S72
(9 26 47)(10 27 48)(11 28 41)(12 29 42)(13 30 43)(14 31 44)(15 32 45)(16 25 46)(17 55 36)(18 56 37)(19 49 38)(20 50 39)(21 51 40)(22 52 33)(23 53 34)(24 54 35)
(1 71 58)(2 72 59)(3 65 60)(4 66 61)(5 67 62)(6 68 63)(7 69 64)(8 70 57)(9 47 26)(10 48 27)(11 41 28)(12 42 29)(13 43 30)(14 44 31)(15 45 32)(16 46 25)(17 55 36)(18 56 37)(19 49 38)(20 50 39)(21 51 40)(22 52 33)(23 53 34)(24 54 35)
(1 15 24)(2 16 17)(3 9 18)(4 10 19)(5 11 20)(6 12 21)(7 13 22)(8 14 23)(25 36 59)(26 37 60)(27 38 61)(28 39 62)(29 40 63)(30 33 64)(31 34 57)(32 35 58)(41 50 67)(42 51 68)(43 52 69)(44 53 70)(45 54 71)(46 55 72)(47 56 65)(48 49 66)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)
(2 4)(3 7)(6 8)(9 13)(10 16)(12 14)(17 19)(18 22)(21 23)(25 48)(26 43)(27 46)(28 41)(29 44)(30 47)(31 42)(32 45)(33 56)(34 51)(35 54)(36 49)(37 52)(38 55)(39 50)(40 53)(57 68)(58 71)(59 66)(60 69)(61 72)(62 67)(63 70)(64 65)

G:=sub<Sym(72)| (9,26,47)(10,27,48)(11,28,41)(12,29,42)(13,30,43)(14,31,44)(15,32,45)(16,25,46)(17,55,36)(18,56,37)(19,49,38)(20,50,39)(21,51,40)(22,52,33)(23,53,34)(24,54,35), (1,71,58)(2,72,59)(3,65,60)(4,66,61)(5,67,62)(6,68,63)(7,69,64)(8,70,57)(9,47,26)(10,48,27)(11,41,28)(12,42,29)(13,43,30)(14,44,31)(15,45,32)(16,46,25)(17,55,36)(18,56,37)(19,49,38)(20,50,39)(21,51,40)(22,52,33)(23,53,34)(24,54,35), (1,15,24)(2,16,17)(3,9,18)(4,10,19)(5,11,20)(6,12,21)(7,13,22)(8,14,23)(25,36,59)(26,37,60)(27,38,61)(28,39,62)(29,40,63)(30,33,64)(31,34,57)(32,35,58)(41,50,67)(42,51,68)(43,52,69)(44,53,70)(45,54,71)(46,55,72)(47,56,65)(48,49,66), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72), (2,4)(3,7)(6,8)(9,13)(10,16)(12,14)(17,19)(18,22)(21,23)(25,48)(26,43)(27,46)(28,41)(29,44)(30,47)(31,42)(32,45)(33,56)(34,51)(35,54)(36,49)(37,52)(38,55)(39,50)(40,53)(57,68)(58,71)(59,66)(60,69)(61,72)(62,67)(63,70)(64,65)>;

G:=Group( (9,26,47)(10,27,48)(11,28,41)(12,29,42)(13,30,43)(14,31,44)(15,32,45)(16,25,46)(17,55,36)(18,56,37)(19,49,38)(20,50,39)(21,51,40)(22,52,33)(23,53,34)(24,54,35), (1,71,58)(2,72,59)(3,65,60)(4,66,61)(5,67,62)(6,68,63)(7,69,64)(8,70,57)(9,47,26)(10,48,27)(11,41,28)(12,42,29)(13,43,30)(14,44,31)(15,45,32)(16,46,25)(17,55,36)(18,56,37)(19,49,38)(20,50,39)(21,51,40)(22,52,33)(23,53,34)(24,54,35), (1,15,24)(2,16,17)(3,9,18)(4,10,19)(5,11,20)(6,12,21)(7,13,22)(8,14,23)(25,36,59)(26,37,60)(27,38,61)(28,39,62)(29,40,63)(30,33,64)(31,34,57)(32,35,58)(41,50,67)(42,51,68)(43,52,69)(44,53,70)(45,54,71)(46,55,72)(47,56,65)(48,49,66), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72), (2,4)(3,7)(6,8)(9,13)(10,16)(12,14)(17,19)(18,22)(21,23)(25,48)(26,43)(27,46)(28,41)(29,44)(30,47)(31,42)(32,45)(33,56)(34,51)(35,54)(36,49)(37,52)(38,55)(39,50)(40,53)(57,68)(58,71)(59,66)(60,69)(61,72)(62,67)(63,70)(64,65) );

G=PermutationGroup([[(9,26,47),(10,27,48),(11,28,41),(12,29,42),(13,30,43),(14,31,44),(15,32,45),(16,25,46),(17,55,36),(18,56,37),(19,49,38),(20,50,39),(21,51,40),(22,52,33),(23,53,34),(24,54,35)], [(1,71,58),(2,72,59),(3,65,60),(4,66,61),(5,67,62),(6,68,63),(7,69,64),(8,70,57),(9,47,26),(10,48,27),(11,41,28),(12,42,29),(13,43,30),(14,44,31),(15,45,32),(16,46,25),(17,55,36),(18,56,37),(19,49,38),(20,50,39),(21,51,40),(22,52,33),(23,53,34),(24,54,35)], [(1,15,24),(2,16,17),(3,9,18),(4,10,19),(5,11,20),(6,12,21),(7,13,22),(8,14,23),(25,36,59),(26,37,60),(27,38,61),(28,39,62),(29,40,63),(30,33,64),(31,34,57),(32,35,58),(41,50,67),(42,51,68),(43,52,69),(44,53,70),(45,54,71),(46,55,72),(47,56,65),(48,49,66)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72)], [(2,4),(3,7),(6,8),(9,13),(10,16),(12,14),(17,19),(18,22),(21,23),(25,48),(26,43),(27,46),(28,41),(29,44),(30,47),(31,42),(32,45),(33,56),(34,51),(35,54),(36,49),(37,52),(38,55),(39,50),(40,53),(57,68),(58,71),(59,66),(60,69),(61,72),(62,67),(63,70),(64,65)]])

53 conjugacy classes

class 1 2A2B3A3B3C3D3E3F4A4B6A6B6C6D6E6F6G6H8A8B12A12B12C···12J12K12L24A24B24C24D24E···24T
order122333333446666666688121212···1212122424242424···24
size1136233666236233666363622226···6363622226···6

53 irreducible representations

dim111111112222222222226666
type+++++++++++
imageC1C2C2C2C3C6C6C6S3D4D6SD16C3×S3D12C3×D4S3×C6C24⋊C2C3×SD16C3×D12C3×C24⋊C2C32⋊C6C2×C32⋊C6He34D4He36SD16
kernelHe36SD16C8×He3He33Q8He34D4C242S3C3×C24C324Q8C12⋊S3C3×C24C2×He3C3×C12He3C24C3×C6C3×C6C12C32C32C6C3C8C4C2C1
# reps111122221112222244481124

Matrix representation of He36SD16 in GL8(𝔽73)

072000000
172000000
00100000
00010000
00000100
006464727200
0088007272
00000010
,
10000000
01000000
007210000
007200000
00900100
00064727200
006500001
0008007272
,
10000000
01000000
000072100
006464717200
00009010
00009001
000065000
001065000
,
4862000000
1137000000
007200000
000720000
000072000
000007200
000000720
000000072
,
172000000
072000000
00010000
00100000
00001000
006464727200
00000010
0088007272

G:=sub<GL(8,GF(73))| [0,1,0,0,0,0,0,0,72,72,0,0,0,0,0,0,0,0,1,0,0,64,8,0,0,0,0,1,0,64,8,0,0,0,0,0,0,72,0,0,0,0,0,0,1,72,0,0,0,0,0,0,0,0,72,1,0,0,0,0,0,0,72,0],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,72,72,9,0,65,0,0,0,1,0,0,64,0,8,0,0,0,0,0,72,0,0,0,0,0,0,1,72,0,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,1,72],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,64,0,0,0,1,0,0,0,64,0,0,0,0,0,0,72,71,9,9,65,65,0,0,1,72,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0],[48,11,0,0,0,0,0,0,62,37,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,72],[1,0,0,0,0,0,0,0,72,72,0,0,0,0,0,0,0,0,0,1,0,64,0,8,0,0,1,0,0,64,0,8,0,0,0,0,1,72,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,1,72,0,0,0,0,0,0,0,72] >;

He36SD16 in GAP, Magma, Sage, TeX

{\rm He}_3\rtimes_6{\rm SD}_{16}
% in TeX

G:=Group("He3:6SD16");
// GroupNames label

G:=SmallGroup(432,117);
// by ID

G=gap.SmallGroup(432,117);
# by ID

G:=PCGroup([7,-2,-2,-3,-2,-2,-3,-3,197,92,1011,80,4037,2035,14118]);
// Polycyclic

G:=Group<a,b,c,d,e|a^3=b^3=c^3=d^8=e^2=1,a*b=b*a,c*a*c^-1=a*b^-1,a*d=d*a,e*a*e=a^-1,b*c=c*b,b*d=d*b,e*b*e=b^-1,c*d=d*c,c*e=e*c,e*d*e=d^3>;
// generators/relations

׿
×
𝔽