Extensions 1→N→G→Q→1 with N=C2xC18 and Q=C12

Direct product G=NxQ with N=C2xC18 and Q=C12
dρLabelID
C2xC6xC36432C2xC6xC36432,400

Semidirect products G=N:Q with N=C2xC18 and Q=C12
extensionφ:Q→Aut NdρLabelID
(C2xC18):1C12 = Dic9:A4φ: C12/C2C6 ⊆ Aut C2xC181086-(C2xC18):1C12432,265
(C2xC18):2C12 = A4xDic9φ: C12/C2C6 ⊆ Aut C2xC181086-(C2xC18):2C12432,266
(C2xC18):3C12 = C62.27D6φ: C12/C2C6 ⊆ Aut C2xC1872(C2xC18):3C12432,167
(C2xC18):4C12 = C22xC9:C12φ: C12/C2C6 ⊆ Aut C2xC18144(C2xC18):4C12432,378
(C2xC18):5C12 = C22:C4x3- 1+2φ: C12/C2C6 ⊆ Aut C2xC1872(C2xC18):5C12432,205
(C2xC18):6C12 = A4xC36φ: C12/C4C3 ⊆ Aut C2xC181083(C2xC18):6C12432,325
(C2xC18):7C12 = C4xC9:A4φ: C12/C4C3 ⊆ Aut C2xC181083(C2xC18):7C12432,326
(C2xC18):8C12 = C22xC4x3- 1+2φ: C12/C4C3 ⊆ Aut C2xC18144(C2xC18):8C12432,402
(C2xC18):9C12 = C22:C4xC3xC9φ: C12/C6C2 ⊆ Aut C2xC18216(C2xC18):9C12432,203
(C2xC18):10C12 = C3xC18.D4φ: C12/C6C2 ⊆ Aut C2xC1872(C2xC18):10C12432,164
(C2xC18):11C12 = C2xC6xDic9φ: C12/C6C2 ⊆ Aut C2xC18144(C2xC18):11C12432,372

Non-split extensions G=N.Q with N=C2xC18 and Q=C12
extensionφ:Q→Aut NdρLabelID
(C2xC18).1C12 = C2xC9:C24φ: C12/C2C6 ⊆ Aut C2xC18144(C2xC18).1C12432,142
(C2xC18).2C12 = C36.C12φ: C12/C2C6 ⊆ Aut C2xC18726(C2xC18).2C12432,143
(C2xC18).3C12 = M4(2)x3- 1+2φ: C12/C2C6 ⊆ Aut C2xC18726(C2xC18).3C12432,214
(C2xC18).4C12 = C4xC9.A4φ: C12/C4C3 ⊆ Aut C2xC181083(C2xC18).4C12432,40
(C2xC18).5C12 = C2xC8x3- 1+2φ: C12/C4C3 ⊆ Aut C2xC18144(C2xC18).5C12432,211
(C2xC18).6C12 = C22:C4xC27φ: C12/C6C2 ⊆ Aut C2xC18216(C2xC18).6C12432,21
(C2xC18).7C12 = M4(2)xC27φ: C12/C6C2 ⊆ Aut C2xC182162(C2xC18).7C12432,24
(C2xC18).8C12 = M4(2)xC3xC9φ: C12/C6C2 ⊆ Aut C2xC18216(C2xC18).8C12432,212
(C2xC18).9C12 = C6xC9:C8φ: C12/C6C2 ⊆ Aut C2xC18144(C2xC18).9C12432,124
(C2xC18).10C12 = C3xC4.Dic9φ: C12/C6C2 ⊆ Aut C2xC18722(C2xC18).10C12432,125

׿
x
:
Z
F
o
wr
Q
<