d | ρ | Label | ID | ||
---|---|---|---|---|---|
C2xC6xC36 | 432 | C2xC6xC36 | 432,400 |
extension | φ:Q→Aut N | d | ρ | Label | ID |
---|---|---|---|---|---|
(C2xC18):1C12 = Dic9:A4 | φ: C12/C2 → C6 ⊆ Aut C2xC18 | 108 | 6- | (C2xC18):1C12 | 432,265 |
(C2xC18):2C12 = A4xDic9 | φ: C12/C2 → C6 ⊆ Aut C2xC18 | 108 | 6- | (C2xC18):2C12 | 432,266 |
(C2xC18):3C12 = C62.27D6 | φ: C12/C2 → C6 ⊆ Aut C2xC18 | 72 | (C2xC18):3C12 | 432,167 | |
(C2xC18):4C12 = C22xC9:C12 | φ: C12/C2 → C6 ⊆ Aut C2xC18 | 144 | (C2xC18):4C12 | 432,378 | |
(C2xC18):5C12 = C22:C4x3- 1+2 | φ: C12/C2 → C6 ⊆ Aut C2xC18 | 72 | (C2xC18):5C12 | 432,205 | |
(C2xC18):6C12 = A4xC36 | φ: C12/C4 → C3 ⊆ Aut C2xC18 | 108 | 3 | (C2xC18):6C12 | 432,325 |
(C2xC18):7C12 = C4xC9:A4 | φ: C12/C4 → C3 ⊆ Aut C2xC18 | 108 | 3 | (C2xC18):7C12 | 432,326 |
(C2xC18):8C12 = C22xC4x3- 1+2 | φ: C12/C4 → C3 ⊆ Aut C2xC18 | 144 | (C2xC18):8C12 | 432,402 | |
(C2xC18):9C12 = C22:C4xC3xC9 | φ: C12/C6 → C2 ⊆ Aut C2xC18 | 216 | (C2xC18):9C12 | 432,203 | |
(C2xC18):10C12 = C3xC18.D4 | φ: C12/C6 → C2 ⊆ Aut C2xC18 | 72 | (C2xC18):10C12 | 432,164 | |
(C2xC18):11C12 = C2xC6xDic9 | φ: C12/C6 → C2 ⊆ Aut C2xC18 | 144 | (C2xC18):11C12 | 432,372 |
extension | φ:Q→Aut N | d | ρ | Label | ID |
---|---|---|---|---|---|
(C2xC18).1C12 = C2xC9:C24 | φ: C12/C2 → C6 ⊆ Aut C2xC18 | 144 | (C2xC18).1C12 | 432,142 | |
(C2xC18).2C12 = C36.C12 | φ: C12/C2 → C6 ⊆ Aut C2xC18 | 72 | 6 | (C2xC18).2C12 | 432,143 |
(C2xC18).3C12 = M4(2)x3- 1+2 | φ: C12/C2 → C6 ⊆ Aut C2xC18 | 72 | 6 | (C2xC18).3C12 | 432,214 |
(C2xC18).4C12 = C4xC9.A4 | φ: C12/C4 → C3 ⊆ Aut C2xC18 | 108 | 3 | (C2xC18).4C12 | 432,40 |
(C2xC18).5C12 = C2xC8x3- 1+2 | φ: C12/C4 → C3 ⊆ Aut C2xC18 | 144 | (C2xC18).5C12 | 432,211 | |
(C2xC18).6C12 = C22:C4xC27 | φ: C12/C6 → C2 ⊆ Aut C2xC18 | 216 | (C2xC18).6C12 | 432,21 | |
(C2xC18).7C12 = M4(2)xC27 | φ: C12/C6 → C2 ⊆ Aut C2xC18 | 216 | 2 | (C2xC18).7C12 | 432,24 |
(C2xC18).8C12 = M4(2)xC3xC9 | φ: C12/C6 → C2 ⊆ Aut C2xC18 | 216 | (C2xC18).8C12 | 432,212 | |
(C2xC18).9C12 = C6xC9:C8 | φ: C12/C6 → C2 ⊆ Aut C2xC18 | 144 | (C2xC18).9C12 | 432,124 | |
(C2xC18).10C12 = C3xC4.Dic9 | φ: C12/C6 → C2 ⊆ Aut C2xC18 | 72 | 2 | (C2xC18).10C12 | 432,125 |