Copied to
clipboard

G = C4×C9.A4order 432 = 24·33

Direct product of C4 and C9.A4

direct product, metabelian, soluble, monomial, A-group

Aliases: C4×C9.A4, C22⋊C108, C36.2A4, C23.C54, C9.(C4×A4), (C2×C6).C36, (C22×C4)⋊C27, (C22×C36).C3, (C22×C12).C9, C18.10(C2×A4), (C2×C18).4C12, C12.1(C3.A4), (C22×C18).6C6, (C22×C6).2C18, C3.(C4×C3.A4), C2.1(C2×C9.A4), C6.4(C2×C3.A4), (C2×C9.A4).2C2, SmallGroup(432,40)

Series: Derived Chief Lower central Upper central

C1C22 — C4×C9.A4
C1C22C2×C6C2×C18C22×C18C2×C9.A4 — C4×C9.A4
C22 — C4×C9.A4
C1C36

Generators and relations for C4×C9.A4
 G = < a,b,c,d,e | a4=b9=c2=d2=1, e3=b, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, ece-1=cd=dc, ede-1=c >

3C2
3C2
3C22
3C4
3C22
3C6
3C6
3C2×C4
3C2×C4
3C2×C6
3C2×C6
3C12
3C18
3C18
4C27
3C2×C12
3C2×C12
3C2×C18
3C2×C18
3C36
4C54
3C2×C36
3C2×C36
4C108

Smallest permutation representation of C4×C9.A4
On 108 points
Generators in S108
(1 95 54 57)(2 96 28 58)(3 97 29 59)(4 98 30 60)(5 99 31 61)(6 100 32 62)(7 101 33 63)(8 102 34 64)(9 103 35 65)(10 104 36 66)(11 105 37 67)(12 106 38 68)(13 107 39 69)(14 108 40 70)(15 82 41 71)(16 83 42 72)(17 84 43 73)(18 85 44 74)(19 86 45 75)(20 87 46 76)(21 88 47 77)(22 89 48 78)(23 90 49 79)(24 91 50 80)(25 92 51 81)(26 93 52 55)(27 94 53 56)
(1 4 7 10 13 16 19 22 25)(2 5 8 11 14 17 20 23 26)(3 6 9 12 15 18 21 24 27)(28 31 34 37 40 43 46 49 52)(29 32 35 38 41 44 47 50 53)(30 33 36 39 42 45 48 51 54)(55 58 61 64 67 70 73 76 79)(56 59 62 65 68 71 74 77 80)(57 60 63 66 69 72 75 78 81)(82 85 88 91 94 97 100 103 106)(83 86 89 92 95 98 101 104 107)(84 87 90 93 96 99 102 105 108)
(2 28)(3 29)(5 31)(6 32)(8 34)(9 35)(11 37)(12 38)(14 40)(15 41)(17 43)(18 44)(20 46)(21 47)(23 49)(24 50)(26 52)(27 53)(55 93)(56 94)(58 96)(59 97)(61 99)(62 100)(64 102)(65 103)(67 105)(68 106)(70 108)(71 82)(73 84)(74 85)(76 87)(77 88)(79 90)(80 91)
(1 54)(3 29)(4 30)(6 32)(7 33)(9 35)(10 36)(12 38)(13 39)(15 41)(16 42)(18 44)(19 45)(21 47)(22 48)(24 50)(25 51)(27 53)(56 94)(57 95)(59 97)(60 98)(62 100)(63 101)(65 103)(66 104)(68 106)(69 107)(71 82)(72 83)(74 85)(75 86)(77 88)(78 89)(80 91)(81 92)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81)(82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108)

G:=sub<Sym(108)| (1,95,54,57)(2,96,28,58)(3,97,29,59)(4,98,30,60)(5,99,31,61)(6,100,32,62)(7,101,33,63)(8,102,34,64)(9,103,35,65)(10,104,36,66)(11,105,37,67)(12,106,38,68)(13,107,39,69)(14,108,40,70)(15,82,41,71)(16,83,42,72)(17,84,43,73)(18,85,44,74)(19,86,45,75)(20,87,46,76)(21,88,47,77)(22,89,48,78)(23,90,49,79)(24,91,50,80)(25,92,51,81)(26,93,52,55)(27,94,53,56), (1,4,7,10,13,16,19,22,25)(2,5,8,11,14,17,20,23,26)(3,6,9,12,15,18,21,24,27)(28,31,34,37,40,43,46,49,52)(29,32,35,38,41,44,47,50,53)(30,33,36,39,42,45,48,51,54)(55,58,61,64,67,70,73,76,79)(56,59,62,65,68,71,74,77,80)(57,60,63,66,69,72,75,78,81)(82,85,88,91,94,97,100,103,106)(83,86,89,92,95,98,101,104,107)(84,87,90,93,96,99,102,105,108), (2,28)(3,29)(5,31)(6,32)(8,34)(9,35)(11,37)(12,38)(14,40)(15,41)(17,43)(18,44)(20,46)(21,47)(23,49)(24,50)(26,52)(27,53)(55,93)(56,94)(58,96)(59,97)(61,99)(62,100)(64,102)(65,103)(67,105)(68,106)(70,108)(71,82)(73,84)(74,85)(76,87)(77,88)(79,90)(80,91), (1,54)(3,29)(4,30)(6,32)(7,33)(9,35)(10,36)(12,38)(13,39)(15,41)(16,42)(18,44)(19,45)(21,47)(22,48)(24,50)(25,51)(27,53)(56,94)(57,95)(59,97)(60,98)(62,100)(63,101)(65,103)(66,104)(68,106)(69,107)(71,82)(72,83)(74,85)(75,86)(77,88)(78,89)(80,91)(81,92), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81)(82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108)>;

G:=Group( (1,95,54,57)(2,96,28,58)(3,97,29,59)(4,98,30,60)(5,99,31,61)(6,100,32,62)(7,101,33,63)(8,102,34,64)(9,103,35,65)(10,104,36,66)(11,105,37,67)(12,106,38,68)(13,107,39,69)(14,108,40,70)(15,82,41,71)(16,83,42,72)(17,84,43,73)(18,85,44,74)(19,86,45,75)(20,87,46,76)(21,88,47,77)(22,89,48,78)(23,90,49,79)(24,91,50,80)(25,92,51,81)(26,93,52,55)(27,94,53,56), (1,4,7,10,13,16,19,22,25)(2,5,8,11,14,17,20,23,26)(3,6,9,12,15,18,21,24,27)(28,31,34,37,40,43,46,49,52)(29,32,35,38,41,44,47,50,53)(30,33,36,39,42,45,48,51,54)(55,58,61,64,67,70,73,76,79)(56,59,62,65,68,71,74,77,80)(57,60,63,66,69,72,75,78,81)(82,85,88,91,94,97,100,103,106)(83,86,89,92,95,98,101,104,107)(84,87,90,93,96,99,102,105,108), (2,28)(3,29)(5,31)(6,32)(8,34)(9,35)(11,37)(12,38)(14,40)(15,41)(17,43)(18,44)(20,46)(21,47)(23,49)(24,50)(26,52)(27,53)(55,93)(56,94)(58,96)(59,97)(61,99)(62,100)(64,102)(65,103)(67,105)(68,106)(70,108)(71,82)(73,84)(74,85)(76,87)(77,88)(79,90)(80,91), (1,54)(3,29)(4,30)(6,32)(7,33)(9,35)(10,36)(12,38)(13,39)(15,41)(16,42)(18,44)(19,45)(21,47)(22,48)(24,50)(25,51)(27,53)(56,94)(57,95)(59,97)(60,98)(62,100)(63,101)(65,103)(66,104)(68,106)(69,107)(71,82)(72,83)(74,85)(75,86)(77,88)(78,89)(80,91)(81,92), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81)(82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108) );

G=PermutationGroup([[(1,95,54,57),(2,96,28,58),(3,97,29,59),(4,98,30,60),(5,99,31,61),(6,100,32,62),(7,101,33,63),(8,102,34,64),(9,103,35,65),(10,104,36,66),(11,105,37,67),(12,106,38,68),(13,107,39,69),(14,108,40,70),(15,82,41,71),(16,83,42,72),(17,84,43,73),(18,85,44,74),(19,86,45,75),(20,87,46,76),(21,88,47,77),(22,89,48,78),(23,90,49,79),(24,91,50,80),(25,92,51,81),(26,93,52,55),(27,94,53,56)], [(1,4,7,10,13,16,19,22,25),(2,5,8,11,14,17,20,23,26),(3,6,9,12,15,18,21,24,27),(28,31,34,37,40,43,46,49,52),(29,32,35,38,41,44,47,50,53),(30,33,36,39,42,45,48,51,54),(55,58,61,64,67,70,73,76,79),(56,59,62,65,68,71,74,77,80),(57,60,63,66,69,72,75,78,81),(82,85,88,91,94,97,100,103,106),(83,86,89,92,95,98,101,104,107),(84,87,90,93,96,99,102,105,108)], [(2,28),(3,29),(5,31),(6,32),(8,34),(9,35),(11,37),(12,38),(14,40),(15,41),(17,43),(18,44),(20,46),(21,47),(23,49),(24,50),(26,52),(27,53),(55,93),(56,94),(58,96),(59,97),(61,99),(62,100),(64,102),(65,103),(67,105),(68,106),(70,108),(71,82),(73,84),(74,85),(76,87),(77,88),(79,90),(80,91)], [(1,54),(3,29),(4,30),(6,32),(7,33),(9,35),(10,36),(12,38),(13,39),(15,41),(16,42),(18,44),(19,45),(21,47),(22,48),(24,50),(25,51),(27,53),(56,94),(57,95),(59,97),(60,98),(62,100),(63,101),(65,103),(66,104),(68,106),(69,107),(71,82),(72,83),(74,85),(75,86),(77,88),(78,89),(80,91),(81,92)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81),(82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108)]])

144 conjugacy classes

class 1 2A2B2C3A3B4A4B4C4D6A6B6C6D6E6F9A···9F12A12B12C12D12E12F12G12H18A···18F18G···18R27A···27R36A···36L36M···36X54A···54R108A···108AJ
order12223344446666669···9121212121212121218···1818···1827···2736···3636···3654···54108···108
size11331111331133331···1111133331···13···34···41···13···34···44···4

144 irreducible representations

dim111111111111333333333
type++++
imageC1C2C3C4C6C9C12C18C27C36C54C108A4C2×A4C3.A4C4×A4C2×C3.A4C9.A4C4×C3.A4C2×C9.A4C4×C9.A4
kernelC4×C9.A4C2×C9.A4C22×C36C9.A4C22×C18C22×C12C2×C18C22×C6C22×C4C2×C6C23C22C36C18C12C9C6C4C3C2C1
# reps11222646181218361122264612

Matrix representation of C4×C9.A4 in GL4(𝔽109) generated by

76000
03300
00330
00033
,
27000
0100
0010
0001
,
1000
0100
001080
0680108
,
1000
010800
001080
041111
,
3000
0010
06898107
074011
G:=sub<GL(4,GF(109))| [76,0,0,0,0,33,0,0,0,0,33,0,0,0,0,33],[27,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1],[1,0,0,0,0,1,0,68,0,0,108,0,0,0,0,108],[1,0,0,0,0,108,0,41,0,0,108,11,0,0,0,1],[3,0,0,0,0,0,68,7,0,1,98,40,0,0,107,11] >;

C4×C9.A4 in GAP, Magma, Sage, TeX

C_4\times C_9.A_4
% in TeX

G:=Group("C4xC9.A4");
// GroupNames label

G:=SmallGroup(432,40);
// by ID

G=gap.SmallGroup(432,40);
# by ID

G:=PCGroup([7,-2,-3,-2,-3,-3,-2,2,42,92,108,4548,7951]);
// Polycyclic

G:=Group<a,b,c,d,e|a^4=b^9=c^2=d^2=1,e^3=b,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,e*c*e^-1=c*d=d*c,e*d*e^-1=c>;
// generators/relations

Export

Subgroup lattice of C4×C9.A4 in TeX

׿
×
𝔽