Extensions 1→N→G→Q→1 with N=C18 and Q=D12

Direct product G=N×Q with N=C18 and Q=D12
dρLabelID
C18×D12144C18xD12432,346

Semidirect products G=N:Q with N=C18 and Q=D12
extensionφ:Q→Aut NdρLabelID
C181D12 = C2×C36⋊S3φ: D12/C12C2 ⊆ Aut C18216C18:1D12432,382
C182D12 = C2×C9⋊D12φ: D12/D6C2 ⊆ Aut C1872C18:2D12432,312

Non-split extensions G=N.Q with N=C18 and Q=D12
extensionφ:Q→Aut NdρLabelID
C18.1D12 = Dic108φ: D12/C12C2 ⊆ Aut C184322-C18.1D12432,4
C18.2D12 = C216⋊C2φ: D12/C12C2 ⊆ Aut C182162C18.2D12432,7
C18.3D12 = D216φ: D12/C12C2 ⊆ Aut C182162+C18.3D12432,8
C18.4D12 = C4⋊Dic27φ: D12/C12C2 ⊆ Aut C18432C18.4D12432,13
C18.5D12 = D54⋊C4φ: D12/C12C2 ⊆ Aut C18216C18.5D12432,14
C18.6D12 = C2×D108φ: D12/C12C2 ⊆ Aut C18216C18.6D12432,45
C18.7D12 = C24.D9φ: D12/C12C2 ⊆ Aut C18432C18.7D12432,168
C18.8D12 = C24⋊D9φ: D12/C12C2 ⊆ Aut C18216C18.8D12432,171
C18.9D12 = C721S3φ: D12/C12C2 ⊆ Aut C18216C18.9D12432,172
C18.10D12 = C36⋊Dic3φ: D12/C12C2 ⊆ Aut C18432C18.10D12432,182
C18.11D12 = C6.11D36φ: D12/C12C2 ⊆ Aut C18216C18.11D12432,183
C18.12D12 = C9⋊D24φ: D12/D6C2 ⊆ Aut C18724+C18.12D12432,69
C18.13D12 = C36.D6φ: D12/D6C2 ⊆ Aut C181444-C18.13D12432,71
C18.14D12 = C18.D12φ: D12/D6C2 ⊆ Aut C18724+C18.14D12432,73
C18.15D12 = C9⋊Dic12φ: D12/D6C2 ⊆ Aut C181444-C18.15D12432,75
C18.16D12 = Dic9⋊Dic3φ: D12/D6C2 ⊆ Aut C18144C18.16D12432,88
C18.17D12 = C6.18D36φ: D12/D6C2 ⊆ Aut C1872C18.17D12432,92
C18.18D12 = D6⋊Dic9φ: D12/D6C2 ⊆ Aut C18144C18.18D12432,93
C18.19D12 = C9×C24⋊C2central extension (φ=1)1442C18.19D12432,111
C18.20D12 = C9×D24central extension (φ=1)1442C18.20D12432,112
C18.21D12 = C9×Dic12central extension (φ=1)1442C18.21D12432,113
C18.22D12 = C9×C4⋊Dic3central extension (φ=1)144C18.22D12432,133
C18.23D12 = C9×D6⋊C4central extension (φ=1)144C18.23D12432,135

׿
×
𝔽