extension | φ:Q→Out N | d | ρ | Label | ID |
(C2×D4)⋊1D14 = D28⋊16D4 | φ: D14/C7 → C22 ⊆ Out C2×D4 | 112 | | (C2xD4):1D14 | 448,570 |
(C2×D4)⋊2D14 = D28⋊5D4 | φ: D14/C7 → C22 ⊆ Out C2×D4 | 56 | 4 | (C2xD4):2D14 | 448,611 |
(C2×D4)⋊3D14 = D28⋊D4 | φ: D14/C7 → C22 ⊆ Out C2×D4 | 112 | | (C2xD4):3D14 | 448,690 |
(C2×D4)⋊4D14 = D28⋊18D4 | φ: D14/C7 → C22 ⊆ Out C2×D4 | 56 | 8+ | (C2xD4):4D14 | 448,732 |
(C2×D4)⋊5D14 = C24⋊2D14 | φ: D14/C7 → C22 ⊆ Out C2×D4 | 112 | | (C2xD4):5D14 | 448,1042 |
(C2×D4)⋊6D14 = C24.34D14 | φ: D14/C7 → C22 ⊆ Out C2×D4 | 112 | | (C2xD4):6D14 | 448,1045 |
(C2×D4)⋊7D14 = C14.382+ 1+4 | φ: D14/C7 → C22 ⊆ Out C2×D4 | 112 | | (C2xD4):7D14 | 448,1060 |
(C2×D4)⋊8D14 = D28⋊20D4 | φ: D14/C7 → C22 ⊆ Out C2×D4 | 112 | | (C2xD4):8D14 | 448,1065 |
(C2×D4)⋊9D14 = C14.422+ 1+4 | φ: D14/C7 → C22 ⊆ Out C2×D4 | 112 | | (C2xD4):9D14 | 448,1066 |
(C2×D4)⋊10D14 = C14.462+ 1+4 | φ: D14/C7 → C22 ⊆ Out C2×D4 | 112 | | (C2xD4):10D14 | 448,1070 |
(C2×D4)⋊11D14 = C14.482+ 1+4 | φ: D14/C7 → C22 ⊆ Out C2×D4 | 112 | | (C2xD4):11D14 | 448,1073 |
(C2×D4)⋊12D14 = C42⋊26D14 | φ: D14/C7 → C22 ⊆ Out C2×D4 | 112 | | (C2xD4):12D14 | 448,1168 |
(C2×D4)⋊13D14 = C42⋊28D14 | φ: D14/C7 → C22 ⊆ Out C2×D4 | 112 | | (C2xD4):13D14 | 448,1173 |
(C2×D4)⋊14D14 = D8⋊13D14 | φ: D14/C7 → C22 ⊆ Out C2×D4 | 112 | 4 | (C2xD4):14D14 | 448,1210 |
(C2×D4)⋊15D14 = D8⋊5D14 | φ: D14/C7 → C22 ⊆ Out C2×D4 | 112 | 8+ | (C2xD4):15D14 | 448,1227 |
(C2×D4)⋊16D14 = D28.32C23 | φ: D14/C7 → C22 ⊆ Out C2×D4 | 112 | 8+ | (C2xD4):16D14 | 448,1288 |
(C2×D4)⋊17D14 = D7×C22≀C2 | φ: D14/D7 → C2 ⊆ Out C2×D4 | 56 | | (C2xD4):17D14 | 448,1041 |
(C2×D4)⋊18D14 = C24⋊3D14 | φ: D14/D7 → C2 ⊆ Out C2×D4 | 112 | | (C2xD4):18D14 | 448,1043 |
(C2×D4)⋊19D14 = C24.33D14 | φ: D14/D7 → C2 ⊆ Out C2×D4 | 112 | | (C2xD4):19D14 | 448,1044 |
(C2×D4)⋊20D14 = D7×C4⋊D4 | φ: D14/D7 → C2 ⊆ Out C2×D4 | 112 | | (C2xD4):20D14 | 448,1057 |
(C2×D4)⋊21D14 = C14.372+ 1+4 | φ: D14/D7 → C2 ⊆ Out C2×D4 | 112 | | (C2xD4):21D14 | 448,1058 |
(C2×D4)⋊22D14 = C4⋊C4⋊21D14 | φ: D14/D7 → C2 ⊆ Out C2×D4 | 112 | | (C2xD4):22D14 | 448,1059 |
(C2×D4)⋊23D14 = D28⋊19D4 | φ: D14/D7 → C2 ⊆ Out C2×D4 | 112 | | (C2xD4):23D14 | 448,1062 |
(C2×D4)⋊24D14 = C14.402+ 1+4 | φ: D14/D7 → C2 ⊆ Out C2×D4 | 112 | | (C2xD4):24D14 | 448,1063 |
(C2×D4)⋊25D14 = D7×C4⋊1D4 | φ: D14/D7 → C2 ⊆ Out C2×D4 | 112 | | (C2xD4):25D14 | 448,1167 |
(C2×D4)⋊26D14 = D28⋊11D4 | φ: D14/D7 → C2 ⊆ Out C2×D4 | 112 | | (C2xD4):26D14 | 448,1170 |
(C2×D4)⋊27D14 = C2×D7×D8 | φ: D14/D7 → C2 ⊆ Out C2×D4 | 112 | | (C2xD4):27D14 | 448,1207 |
(C2×D4)⋊28D14 = C2×D8⋊D7 | φ: D14/D7 → C2 ⊆ Out C2×D4 | 112 | | (C2xD4):28D14 | 448,1208 |
(C2×D4)⋊29D14 = D7×C8⋊C22 | φ: D14/D7 → C2 ⊆ Out C2×D4 | 56 | 8+ | (C2xD4):29D14 | 448,1225 |
(C2×D4)⋊30D14 = SD16⋊D14 | φ: D14/D7 → C2 ⊆ Out C2×D4 | 112 | 8- | (C2xD4):30D14 | 448,1226 |
(C2×D4)⋊31D14 = D7×2+ 1+4 | φ: D14/D7 → C2 ⊆ Out C2×D4 | 56 | 8+ | (C2xD4):31D14 | 448,1379 |
(C2×D4)⋊32D14 = D14.C24 | φ: D14/D7 → C2 ⊆ Out C2×D4 | 112 | 8- | (C2xD4):32D14 | 448,1380 |
(C2×D4)⋊33D14 = C22×D4⋊D7 | φ: D14/C14 → C2 ⊆ Out C2×D4 | 224 | | (C2xD4):33D14 | 448,1245 |
(C2×D4)⋊34D14 = C2×D4.D14 | φ: D14/C14 → C2 ⊆ Out C2×D4 | 112 | | (C2xD4):34D14 | 448,1246 |
(C2×D4)⋊35D14 = C2×C23⋊D14 | φ: D14/C14 → C2 ⊆ Out C2×D4 | 112 | | (C2xD4):35D14 | 448,1252 |
(C2×D4)⋊36D14 = C2×C28⋊2D4 | φ: D14/C14 → C2 ⊆ Out C2×D4 | 224 | | (C2xD4):36D14 | 448,1253 |
(C2×D4)⋊37D14 = D4×C7⋊D4 | φ: D14/C14 → C2 ⊆ Out C2×D4 | 112 | | (C2xD4):37D14 | 448,1254 |
(C2×D4)⋊38D14 = C2×Dic7⋊D4 | φ: D14/C14 → C2 ⊆ Out C2×D4 | 224 | | (C2xD4):38D14 | 448,1255 |
(C2×D4)⋊39D14 = C2×C28⋊D4 | φ: D14/C14 → C2 ⊆ Out C2×D4 | 224 | | (C2xD4):39D14 | 448,1256 |
(C2×D4)⋊40D14 = C24⋊7D14 | φ: D14/C14 → C2 ⊆ Out C2×D4 | 112 | | (C2xD4):40D14 | 448,1257 |
(C2×D4)⋊41D14 = C2×D4⋊D14 | φ: D14/C14 → C2 ⊆ Out C2×D4 | 112 | | (C2xD4):41D14 | 448,1273 |
(C2×D4)⋊42D14 = C28.C24 | φ: D14/C14 → C2 ⊆ Out C2×D4 | 112 | 4 | (C2xD4):42D14 | 448,1275 |
(C2×D4)⋊43D14 = (C2×C28)⋊15D4 | φ: D14/C14 → C2 ⊆ Out C2×D4 | 112 | | (C2xD4):43D14 | 448,1281 |
(C2×D4)⋊44D14 = C14.1452+ 1+4 | φ: D14/C14 → C2 ⊆ Out C2×D4 | 112 | | (C2xD4):44D14 | 448,1282 |
(C2×D4)⋊45D14 = C14.1462+ 1+4 | φ: D14/C14 → C2 ⊆ Out C2×D4 | 112 | | (C2xD4):45D14 | 448,1283 |
(C2×D4)⋊46D14 = C2×D4⋊6D14 | φ: D14/C14 → C2 ⊆ Out C2×D4 | 112 | | (C2xD4):46D14 | 448,1371 |
(C2×D4)⋊47D14 = C14.C25 | φ: D14/C14 → C2 ⊆ Out C2×D4 | 112 | 4 | (C2xD4):47D14 | 448,1378 |
(C2×D4)⋊48D14 = C22×D4⋊2D7 | φ: trivial image | 224 | | (C2xD4):48D14 | 448,1370 |
(C2×D4)⋊49D14 = C2×D7×C4○D4 | φ: trivial image | 112 | | (C2xD4):49D14 | 448,1375 |
(C2×D4)⋊50D14 = C2×D4⋊8D14 | φ: trivial image | 112 | | (C2xD4):50D14 | 448,1376 |
extension | φ:Q→Out N | d | ρ | Label | ID |
(C2×D4).1D14 = C7⋊C2≀C4 | φ: D14/C7 → C22 ⊆ Out C2×D4 | 56 | 8+ | (C2xD4).1D14 | 448,28 |
(C2×D4).2D14 = (C2×C28).D4 | φ: D14/C7 → C22 ⊆ Out C2×D4 | 112 | 8- | (C2xD4).2D14 | 448,29 |
(C2×D4).3D14 = C23.D28 | φ: D14/C7 → C22 ⊆ Out C2×D4 | 112 | 8- | (C2xD4).3D14 | 448,30 |
(C2×D4).4D14 = C23.2D28 | φ: D14/C7 → C22 ⊆ Out C2×D4 | 56 | 8+ | (C2xD4).4D14 | 448,31 |
(C2×D4).5D14 = C23.3D28 | φ: D14/C7 → C22 ⊆ Out C2×D4 | 56 | 8+ | (C2xD4).5D14 | 448,32 |
(C2×D4).6D14 = C23.4D28 | φ: D14/C7 → C22 ⊆ Out C2×D4 | 112 | 8- | (C2xD4).6D14 | 448,33 |
(C2×D4).7D14 = C24⋊Dic7 | φ: D14/C7 → C22 ⊆ Out C2×D4 | 56 | 4 | (C2xD4).7D14 | 448,93 |
(C2×D4).8D14 = (C22×C28)⋊C4 | φ: D14/C7 → C22 ⊆ Out C2×D4 | 112 | 4 | (C2xD4).8D14 | 448,96 |
(C2×D4).9D14 = C42⋊2Dic7 | φ: D14/C7 → C22 ⊆ Out C2×D4 | 112 | 4 | (C2xD4).9D14 | 448,98 |
(C2×D4).10D14 = C42⋊3Dic7 | φ: D14/C7 → C22 ⊆ Out C2×D4 | 56 | 4 | (C2xD4).10D14 | 448,102 |
(C2×D4).11D14 = C23⋊D28 | φ: D14/C7 → C22 ⊆ Out C2×D4 | 56 | 8+ | (C2xD4).11D14 | 448,275 |
(C2×D4).12D14 = C23.5D28 | φ: D14/C7 → C22 ⊆ Out C2×D4 | 112 | 8- | (C2xD4).12D14 | 448,276 |
(C2×D4).13D14 = D28.1D4 | φ: D14/C7 → C22 ⊆ Out C2×D4 | 112 | 8- | (C2xD4).13D14 | 448,280 |
(C2×D4).14D14 = D28⋊1D4 | φ: D14/C7 → C22 ⊆ Out C2×D4 | 56 | 8+ | (C2xD4).14D14 | 448,281 |
(C2×D4).15D14 = D28.2D4 | φ: D14/C7 → C22 ⊆ Out C2×D4 | 112 | 8- | (C2xD4).15D14 | 448,282 |
(C2×D4).16D14 = D28.3D4 | φ: D14/C7 → C22 ⊆ Out C2×D4 | 112 | 8+ | (C2xD4).16D14 | 448,283 |
(C2×D4).17D14 = Dic7.SD16 | φ: D14/C7 → C22 ⊆ Out C2×D4 | 224 | | (C2xD4).17D14 | 448,294 |
(C2×D4).18D14 = Dic14⋊2D4 | φ: D14/C7 → C22 ⊆ Out C2×D4 | 224 | | (C2xD4).18D14 | 448,296 |
(C2×D4).19D14 = C4⋊C4.D14 | φ: D14/C7 → C22 ⊆ Out C2×D4 | 224 | | (C2xD4).19D14 | 448,298 |
(C2×D4).20D14 = C28⋊Q8⋊C2 | φ: D14/C7 → C22 ⊆ Out C2×D4 | 224 | | (C2xD4).20D14 | 448,299 |
(C2×D4).21D14 = Dic14.D4 | φ: D14/C7 → C22 ⊆ Out C2×D4 | 224 | | (C2xD4).21D14 | 448,301 |
(C2×D4).22D14 = (C8×Dic7)⋊C2 | φ: D14/C7 → C22 ⊆ Out C2×D4 | 224 | | (C2xD4).22D14 | 448,302 |
(C2×D4).23D14 = D14.D8 | φ: D14/C7 → C22 ⊆ Out C2×D4 | 224 | | (C2xD4).23D14 | 448,308 |
(C2×D4).24D14 = D14⋊D8 | φ: D14/C7 → C22 ⊆ Out C2×D4 | 224 | | (C2xD4).24D14 | 448,309 |
(C2×D4).25D14 = D14.SD16 | φ: D14/C7 → C22 ⊆ Out C2×D4 | 224 | | (C2xD4).25D14 | 448,311 |
(C2×D4).26D14 = D14⋊SD16 | φ: D14/C7 → C22 ⊆ Out C2×D4 | 224 | | (C2xD4).26D14 | 448,312 |
(C2×D4).27D14 = C8⋊Dic7⋊C2 | φ: D14/C7 → C22 ⊆ Out C2×D4 | 224 | | (C2xD4).27D14 | 448,313 |
(C2×D4).28D14 = C7⋊C8⋊1D4 | φ: D14/C7 → C22 ⊆ Out C2×D4 | 224 | | (C2xD4).28D14 | 448,314 |
(C2×D4).29D14 = C7⋊C8⋊D4 | φ: D14/C7 → C22 ⊆ Out C2×D4 | 224 | | (C2xD4).29D14 | 448,316 |
(C2×D4).30D14 = C56⋊1C4⋊C2 | φ: D14/C7 → C22 ⊆ Out C2×D4 | 224 | | (C2xD4).30D14 | 448,318 |
(C2×D4).31D14 = D28⋊3D4 | φ: D14/C7 → C22 ⊆ Out C2×D4 | 224 | | (C2xD4).31D14 | 448,320 |
(C2×D4).32D14 = D28.D4 | φ: D14/C7 → C22 ⊆ Out C2×D4 | 224 | | (C2xD4).32D14 | 448,321 |
(C2×D4).33D14 = C24⋊D14 | φ: D14/C7 → C22 ⊆ Out C2×D4 | 56 | 4 | (C2xD4).33D14 | 448,566 |
(C2×D4).34D14 = (C2×C14).D8 | φ: D14/C7 → C22 ⊆ Out C2×D4 | 224 | | (C2xD4).34D14 | 448,567 |
(C2×D4).35D14 = C4⋊D4.D7 | φ: D14/C7 → C22 ⊆ Out C2×D4 | 224 | | (C2xD4).35D14 | 448,568 |
(C2×D4).36D14 = (C2×D4).D14 | φ: D14/C7 → C22 ⊆ Out C2×D4 | 224 | | (C2xD4).36D14 | 448,569 |
(C2×D4).37D14 = D28⋊17D4 | φ: D14/C7 → C22 ⊆ Out C2×D4 | 224 | | (C2xD4).37D14 | 448,571 |
(C2×D4).38D14 = C7⋊C8⋊22D4 | φ: D14/C7 → C22 ⊆ Out C2×D4 | 224 | | (C2xD4).38D14 | 448,572 |
(C2×D4).39D14 = C4⋊D4⋊D7 | φ: D14/C7 → C22 ⊆ Out C2×D4 | 224 | | (C2xD4).39D14 | 448,573 |
(C2×D4).40D14 = Dic14⋊17D4 | φ: D14/C7 → C22 ⊆ Out C2×D4 | 224 | | (C2xD4).40D14 | 448,574 |
(C2×D4).41D14 = C7⋊C8⋊23D4 | φ: D14/C7 → C22 ⊆ Out C2×D4 | 224 | | (C2xD4).41D14 | 448,575 |
(C2×D4).42D14 = C7⋊C8⋊5D4 | φ: D14/C7 → C22 ⊆ Out C2×D4 | 224 | | (C2xD4).42D14 | 448,576 |
(C2×D4).43D14 = C22⋊C4⋊D14 | φ: D14/C7 → C22 ⊆ Out C2×D4 | 112 | 4 | (C2xD4).43D14 | 448,587 |
(C2×D4).44D14 = C42.61D14 | φ: D14/C7 → C22 ⊆ Out C2×D4 | 224 | | (C2xD4).44D14 | 448,588 |
(C2×D4).45D14 = C42.62D14 | φ: D14/C7 → C22 ⊆ Out C2×D4 | 224 | | (C2xD4).45D14 | 448,589 |
(C2×D4).46D14 = C42.213D14 | φ: D14/C7 → C22 ⊆ Out C2×D4 | 224 | | (C2xD4).46D14 | 448,590 |
(C2×D4).47D14 = D28.23D4 | φ: D14/C7 → C22 ⊆ Out C2×D4 | 224 | | (C2xD4).47D14 | 448,591 |
(C2×D4).48D14 = C42.64D14 | φ: D14/C7 → C22 ⊆ Out C2×D4 | 224 | | (C2xD4).48D14 | 448,592 |
(C2×D4).49D14 = C42.214D14 | φ: D14/C7 → C22 ⊆ Out C2×D4 | 224 | | (C2xD4).49D14 | 448,593 |
(C2×D4).50D14 = C42.65D14 | φ: D14/C7 → C22 ⊆ Out C2×D4 | 224 | | (C2xD4).50D14 | 448,594 |
(C2×D4).51D14 = C42⋊5D14 | φ: D14/C7 → C22 ⊆ Out C2×D4 | 112 | 4 | (C2xD4).51D14 | 448,595 |
(C2×D4).52D14 = D28.14D4 | φ: D14/C7 → C22 ⊆ Out C2×D4 | 112 | 4 | (C2xD4).52D14 | 448,596 |
(C2×D4).53D14 = C28.16D8 | φ: D14/C7 → C22 ⊆ Out C2×D4 | 224 | | (C2xD4).53D14 | 448,604 |
(C2×D4).54D14 = C42.72D14 | φ: D14/C7 → C22 ⊆ Out C2×D4 | 224 | | (C2xD4).54D14 | 448,605 |
(C2×D4).55D14 = C28⋊2D8 | φ: D14/C7 → C22 ⊆ Out C2×D4 | 224 | | (C2xD4).55D14 | 448,606 |
(C2×D4).56D14 = C28⋊D8 | φ: D14/C7 → C22 ⊆ Out C2×D4 | 224 | | (C2xD4).56D14 | 448,607 |
(C2×D4).57D14 = C42.74D14 | φ: D14/C7 → C22 ⊆ Out C2×D4 | 224 | | (C2xD4).57D14 | 448,608 |
(C2×D4).58D14 = Dic14⋊9D4 | φ: D14/C7 → C22 ⊆ Out C2×D4 | 224 | | (C2xD4).58D14 | 448,609 |
(C2×D4).59D14 = C28⋊4SD16 | φ: D14/C7 → C22 ⊆ Out C2×D4 | 224 | | (C2xD4).59D14 | 448,610 |
(C2×D4).60D14 = C56⋊5D4 | φ: D14/C7 → C22 ⊆ Out C2×D4 | 224 | | (C2xD4).60D14 | 448,685 |
(C2×D4).61D14 = (C2×D8).D7 | φ: D14/C7 → C22 ⊆ Out C2×D4 | 224 | | (C2xD4).61D14 | 448,687 |
(C2×D4).62D14 = C56⋊11D4 | φ: D14/C7 → C22 ⊆ Out C2×D4 | 224 | | (C2xD4).62D14 | 448,688 |
(C2×D4).63D14 = C56.22D4 | φ: D14/C7 → C22 ⊆ Out C2×D4 | 224 | | (C2xD4).63D14 | 448,689 |
(C2×D4).64D14 = C56⋊6D4 | φ: D14/C7 → C22 ⊆ Out C2×D4 | 224 | | (C2xD4).64D14 | 448,691 |
(C2×D4).65D14 = Dic14⋊D4 | φ: D14/C7 → C22 ⊆ Out C2×D4 | 224 | | (C2xD4).65D14 | 448,692 |
(C2×D4).66D14 = C56⋊12D4 | φ: D14/C7 → C22 ⊆ Out C2×D4 | 224 | | (C2xD4).66D14 | 448,693 |
(C2×D4).67D14 = C56.23D4 | φ: D14/C7 → C22 ⊆ Out C2×D4 | 112 | 4 | (C2xD4).67D14 | 448,694 |
(C2×D4).68D14 = Dic7⋊5SD16 | φ: D14/C7 → C22 ⊆ Out C2×D4 | 224 | | (C2xD4).68D14 | 448,697 |
(C2×D4).69D14 = (C7×Q8).D4 | φ: D14/C7 → C22 ⊆ Out C2×D4 | 224 | | (C2xD4).69D14 | 448,700 |
(C2×D4).70D14 = C56.31D4 | φ: D14/C7 → C22 ⊆ Out C2×D4 | 224 | | (C2xD4).70D14 | 448,701 |
(C2×D4).71D14 = C56.43D4 | φ: D14/C7 → C22 ⊆ Out C2×D4 | 224 | | (C2xD4).71D14 | 448,702 |
(C2×D4).72D14 = Dic14⋊7D4 | φ: D14/C7 → C22 ⊆ Out C2×D4 | 224 | | (C2xD4).72D14 | 448,704 |
(C2×D4).73D14 = C56⋊14D4 | φ: D14/C7 → C22 ⊆ Out C2×D4 | 224 | | (C2xD4).73D14 | 448,705 |
(C2×D4).74D14 = D28⋊7D4 | φ: D14/C7 → C22 ⊆ Out C2×D4 | 224 | | (C2xD4).74D14 | 448,706 |
(C2×D4).75D14 = C56⋊8D4 | φ: D14/C7 → C22 ⊆ Out C2×D4 | 224 | | (C2xD4).75D14 | 448,708 |
(C2×D4).76D14 = C56⋊15D4 | φ: D14/C7 → C22 ⊆ Out C2×D4 | 224 | | (C2xD4).76D14 | 448,709 |
(C2×D4).77D14 = C56⋊9D4 | φ: D14/C7 → C22 ⊆ Out C2×D4 | 224 | | (C2xD4).77D14 | 448,710 |
(C2×D4).78D14 = C56.44D4 | φ: D14/C7 → C22 ⊆ Out C2×D4 | 112 | 4 | (C2xD4).78D14 | 448,711 |
(C2×D4).79D14 = M4(2).D14 | φ: D14/C7 → C22 ⊆ Out C2×D4 | 112 | 8+ | (C2xD4).79D14 | 448,733 |
(C2×D4).80D14 = M4(2).13D14 | φ: D14/C7 → C22 ⊆ Out C2×D4 | 112 | 8- | (C2xD4).80D14 | 448,734 |
(C2×D4).81D14 = D28.38D4 | φ: D14/C7 → C22 ⊆ Out C2×D4 | 112 | 8- | (C2xD4).81D14 | 448,735 |
(C2×D4).82D14 = 2+ 1+4⋊D7 | φ: D14/C7 → C22 ⊆ Out C2×D4 | 56 | 8+ | (C2xD4).82D14 | 448,775 |
(C2×D4).83D14 = 2+ 1+4.D7 | φ: D14/C7 → C22 ⊆ Out C2×D4 | 112 | 8- | (C2xD4).83D14 | 448,776 |
(C2×D4).84D14 = 2+ 1+4.2D7 | φ: D14/C7 → C22 ⊆ Out C2×D4 | 112 | 8- | (C2xD4).84D14 | 448,777 |
(C2×D4).85D14 = 2+ 1+4⋊2D7 | φ: D14/C7 → C22 ⊆ Out C2×D4 | 56 | 8+ | (C2xD4).85D14 | 448,778 |
(C2×D4).86D14 = C24.35D14 | φ: D14/C7 → C22 ⊆ Out C2×D4 | 112 | | (C2xD4).86D14 | 448,1046 |
(C2×D4).87D14 = C24⋊4D14 | φ: D14/C7 → C22 ⊆ Out C2×D4 | 112 | | (C2xD4).87D14 | 448,1047 |
(C2×D4).88D14 = C24.36D14 | φ: D14/C7 → C22 ⊆ Out C2×D4 | 112 | | (C2xD4).88D14 | 448,1048 |
(C2×D4).89D14 = C14.682- 1+4 | φ: D14/C7 → C22 ⊆ Out C2×D4 | 224 | | (C2xD4).89D14 | 448,1050 |
(C2×D4).90D14 = Dic14⋊20D4 | φ: D14/C7 → C22 ⊆ Out C2×D4 | 224 | | (C2xD4).90D14 | 448,1052 |
(C2×D4).91D14 = C14.712- 1+4 | φ: D14/C7 → C22 ⊆ Out C2×D4 | 224 | | (C2xD4).91D14 | 448,1056 |
(C2×D4).92D14 = C14.722- 1+4 | φ: D14/C7 → C22 ⊆ Out C2×D4 | 224 | | (C2xD4).92D14 | 448,1061 |
(C2×D4).93D14 = C14.442+ 1+4 | φ: D14/C7 → C22 ⊆ Out C2×D4 | 224 | | (C2xD4).93D14 | 448,1068 |
(C2×D4).94D14 = C14.452+ 1+4 | φ: D14/C7 → C22 ⊆ Out C2×D4 | 224 | | (C2xD4).94D14 | 448,1069 |
(C2×D4).95D14 = C14.472+ 1+4 | φ: D14/C7 → C22 ⊆ Out C2×D4 | 224 | | (C2xD4).95D14 | 448,1072 |
(C2×D4).96D14 = C14.492+ 1+4 | φ: D14/C7 → C22 ⊆ Out C2×D4 | 224 | | (C2xD4).96D14 | 448,1074 |
(C2×D4).97D14 = C14.602+ 1+4 | φ: D14/C7 → C22 ⊆ Out C2×D4 | 224 | | (C2xD4).97D14 | 448,1104 |
(C2×D4).98D14 = C14.612+ 1+4 | φ: D14/C7 → C22 ⊆ Out C2×D4 | 112 | | (C2xD4).98D14 | 448,1110 |
(C2×D4).99D14 = C14.622+ 1+4 | φ: D14/C7 → C22 ⊆ Out C2×D4 | 112 | | (C2xD4).99D14 | 448,1112 |
(C2×D4).100D14 = C14.832- 1+4 | φ: D14/C7 → C22 ⊆ Out C2×D4 | 224 | | (C2xD4).100D14 | 448,1113 |
(C2×D4).101D14 = C14.642+ 1+4 | φ: D14/C7 → C22 ⊆ Out C2×D4 | 224 | | (C2xD4).101D14 | 448,1114 |
(C2×D4).102D14 = C14.842- 1+4 | φ: D14/C7 → C22 ⊆ Out C2×D4 | 224 | | (C2xD4).102D14 | 448,1115 |
(C2×D4).103D14 = C14.662+ 1+4 | φ: D14/C7 → C22 ⊆ Out C2×D4 | 224 | | (C2xD4).103D14 | 448,1116 |
(C2×D4).104D14 = C14.672+ 1+4 | φ: D14/C7 → C22 ⊆ Out C2×D4 | 224 | | (C2xD4).104D14 | 448,1117 |
(C2×D4).105D14 = C14.682+ 1+4 | φ: D14/C7 → C22 ⊆ Out C2×D4 | 112 | | (C2xD4).105D14 | 448,1119 |
(C2×D4).106D14 = C14.862- 1+4 | φ: D14/C7 → C22 ⊆ Out C2×D4 | 224 | | (C2xD4).106D14 | 448,1120 |
(C2×D4).107D14 = C42.137D14 | φ: D14/C7 → C22 ⊆ Out C2×D4 | 224 | | (C2xD4).107D14 | 448,1122 |
(C2×D4).108D14 = C42.138D14 | φ: D14/C7 → C22 ⊆ Out C2×D4 | 224 | | (C2xD4).108D14 | 448,1123 |
(C2×D4).109D14 = C42.140D14 | φ: D14/C7 → C22 ⊆ Out C2×D4 | 224 | | (C2xD4).109D14 | 448,1125 |
(C2×D4).110D14 = C42⋊20D14 | φ: D14/C7 → C22 ⊆ Out C2×D4 | 112 | | (C2xD4).110D14 | 448,1131 |
(C2×D4).111D14 = C42⋊21D14 | φ: D14/C7 → C22 ⊆ Out C2×D4 | 112 | | (C2xD4).111D14 | 448,1132 |
(C2×D4).112D14 = C42⋊22D14 | φ: D14/C7 → C22 ⊆ Out C2×D4 | 112 | | (C2xD4).112D14 | 448,1136 |
(C2×D4).113D14 = C42.145D14 | φ: D14/C7 → C22 ⊆ Out C2×D4 | 224 | | (C2xD4).113D14 | 448,1137 |
(C2×D4).114D14 = C42.166D14 | φ: D14/C7 → C22 ⊆ Out C2×D4 | 224 | | (C2xD4).114D14 | 448,1166 |
(C2×D4).115D14 = Dic14⋊11D4 | φ: D14/C7 → C22 ⊆ Out C2×D4 | 224 | | (C2xD4).115D14 | 448,1171 |
(C2×D4).116D14 = D28.29D4 | φ: D14/C7 → C22 ⊆ Out C2×D4 | 112 | 4 | (C2xD4).116D14 | 448,1215 |
(C2×D4).117D14 = D8⋊6D14 | φ: D14/C7 → C22 ⊆ Out C2×D4 | 112 | 8- | (C2xD4).117D14 | 448,1228 |
(C2×D4).118D14 = D28.33C23 | φ: D14/C7 → C22 ⊆ Out C2×D4 | 112 | 8- | (C2xD4).118D14 | 448,1289 |
(C2×D4).119D14 = C23⋊C4⋊5D7 | φ: D14/D7 → C2 ⊆ Out C2×D4 | 112 | 8- | (C2xD4).119D14 | 448,274 |
(C2×D4).120D14 = D7×C23⋊C4 | φ: D14/D7 → C2 ⊆ Out C2×D4 | 56 | 8+ | (C2xD4).120D14 | 448,277 |
(C2×D4).121D14 = D7×C4.D4 | φ: D14/D7 → C2 ⊆ Out C2×D4 | 56 | 8+ | (C2xD4).121D14 | 448,278 |
(C2×D4).122D14 = M4(2).19D14 | φ: D14/D7 → C2 ⊆ Out C2×D4 | 112 | 8- | (C2xD4).122D14 | 448,279 |
(C2×D4).123D14 = Dic7⋊4D8 | φ: D14/D7 → C2 ⊆ Out C2×D4 | 224 | | (C2xD4).123D14 | 448,290 |
(C2×D4).124D14 = D4.D7⋊C4 | φ: D14/D7 → C2 ⊆ Out C2×D4 | 224 | | (C2xD4).124D14 | 448,291 |
(C2×D4).125D14 = Dic7⋊6SD16 | φ: D14/D7 → C2 ⊆ Out C2×D4 | 224 | | (C2xD4).125D14 | 448,292 |
(C2×D4).126D14 = Dic7.D8 | φ: D14/D7 → C2 ⊆ Out C2×D4 | 224 | | (C2xD4).126D14 | 448,293 |
(C2×D4).127D14 = D4⋊Dic14 | φ: D14/D7 → C2 ⊆ Out C2×D4 | 224 | | (C2xD4).127D14 | 448,295 |
(C2×D4).128D14 = D4.Dic14 | φ: D14/D7 → C2 ⊆ Out C2×D4 | 224 | | (C2xD4).128D14 | 448,297 |
(C2×D4).129D14 = D4.2Dic14 | φ: D14/D7 → C2 ⊆ Out C2×D4 | 224 | | (C2xD4).129D14 | 448,300 |
(C2×D4).130D14 = D7×D4⋊C4 | φ: D14/D7 → C2 ⊆ Out C2×D4 | 112 | | (C2xD4).130D14 | 448,303 |
(C2×D4).131D14 = (D4×D7)⋊C4 | φ: D14/D7 → C2 ⊆ Out C2×D4 | 112 | | (C2xD4).131D14 | 448,304 |
(C2×D4).132D14 = D4⋊(C4×D7) | φ: D14/D7 → C2 ⊆ Out C2×D4 | 224 | | (C2xD4).132D14 | 448,305 |
(C2×D4).133D14 = D4⋊2D7⋊C4 | φ: D14/D7 → C2 ⊆ Out C2×D4 | 224 | | (C2xD4).133D14 | 448,306 |
(C2×D4).134D14 = D4⋊D28 | φ: D14/D7 → C2 ⊆ Out C2×D4 | 112 | | (C2xD4).134D14 | 448,307 |
(C2×D4).135D14 = D4.6D28 | φ: D14/D7 → C2 ⊆ Out C2×D4 | 112 | | (C2xD4).135D14 | 448,310 |
(C2×D4).136D14 = D4⋊3D28 | φ: D14/D7 → C2 ⊆ Out C2×D4 | 224 | | (C2xD4).136D14 | 448,315 |
(C2×D4).137D14 = D4.D28 | φ: D14/D7 → C2 ⊆ Out C2×D4 | 224 | | (C2xD4).137D14 | 448,317 |
(C2×D4).138D14 = D4⋊D7⋊C4 | φ: D14/D7 → C2 ⊆ Out C2×D4 | 224 | | (C2xD4).138D14 | 448,319 |
(C2×D4).139D14 = D8×Dic7 | φ: D14/D7 → C2 ⊆ Out C2×D4 | 224 | | (C2xD4).139D14 | 448,683 |
(C2×D4).140D14 = Dic7⋊D8 | φ: D14/D7 → C2 ⊆ Out C2×D4 | 224 | | (C2xD4).140D14 | 448,684 |
(C2×D4).141D14 = D8⋊Dic7 | φ: D14/D7 → C2 ⊆ Out C2×D4 | 224 | | (C2xD4).141D14 | 448,686 |
(C2×D4).142D14 = SD16×Dic7 | φ: D14/D7 → C2 ⊆ Out C2×D4 | 224 | | (C2xD4).142D14 | 448,695 |
(C2×D4).143D14 = Dic7⋊3SD16 | φ: D14/D7 → C2 ⊆ Out C2×D4 | 224 | | (C2xD4).143D14 | 448,696 |
(C2×D4).144D14 = SD16⋊Dic7 | φ: D14/D7 → C2 ⊆ Out C2×D4 | 224 | | (C2xD4).144D14 | 448,698 |
(C2×D4).145D14 = (C7×D4).D4 | φ: D14/D7 → C2 ⊆ Out C2×D4 | 224 | | (C2xD4).145D14 | 448,699 |
(C2×D4).146D14 = D14⋊6SD16 | φ: D14/D7 → C2 ⊆ Out C2×D4 | 112 | | (C2xD4).146D14 | 448,703 |
(C2×D4).147D14 = Dic14.16D4 | φ: D14/D7 → C2 ⊆ Out C2×D4 | 224 | | (C2xD4).147D14 | 448,707 |
(C2×D4).148D14 = C24.56D14 | φ: D14/D7 → C2 ⊆ Out C2×D4 | 112 | | (C2xD4).148D14 | 448,1039 |
(C2×D4).149D14 = C24.32D14 | φ: D14/D7 → C2 ⊆ Out C2×D4 | 112 | | (C2xD4).149D14 | 448,1040 |
(C2×D4).150D14 = C28⋊(C4○D4) | φ: D14/D7 → C2 ⊆ Out C2×D4 | 224 | | (C2xD4).150D14 | 448,1049 |
(C2×D4).151D14 = Dic14⋊19D4 | φ: D14/D7 → C2 ⊆ Out C2×D4 | 224 | | (C2xD4).151D14 | 448,1051 |
(C2×D4).152D14 = C4⋊C4.178D14 | φ: D14/D7 → C2 ⊆ Out C2×D4 | 224 | | (C2xD4).152D14 | 448,1053 |
(C2×D4).153D14 = C14.342+ 1+4 | φ: D14/D7 → C2 ⊆ Out C2×D4 | 224 | | (C2xD4).153D14 | 448,1054 |
(C2×D4).154D14 = C14.352+ 1+4 | φ: D14/D7 → C2 ⊆ Out C2×D4 | 224 | | (C2xD4).154D14 | 448,1055 |
(C2×D4).155D14 = C14.732- 1+4 | φ: D14/D7 → C2 ⊆ Out C2×D4 | 224 | | (C2xD4).155D14 | 448,1064 |
(C2×D4).156D14 = C14.432+ 1+4 | φ: D14/D7 → C2 ⊆ Out C2×D4 | 224 | | (C2xD4).156D14 | 448,1067 |
(C2×D4).157D14 = C14.1152+ 1+4 | φ: D14/D7 → C2 ⊆ Out C2×D4 | 224 | | (C2xD4).157D14 | 448,1071 |
(C2×D4).158D14 = C14.792- 1+4 | φ: D14/D7 → C2 ⊆ Out C2×D4 | 224 | | (C2xD4).158D14 | 448,1101 |
(C2×D4).159D14 = C4⋊C4.197D14 | φ: D14/D7 → C2 ⊆ Out C2×D4 | 224 | | (C2xD4).159D14 | 448,1102 |
(C2×D4).160D14 = C14.802- 1+4 | φ: D14/D7 → C2 ⊆ Out C2×D4 | 224 | | (C2xD4).160D14 | 448,1103 |
(C2×D4).161D14 = D7×C22.D4 | φ: D14/D7 → C2 ⊆ Out C2×D4 | 112 | | (C2xD4).161D14 | 448,1105 |
(C2×D4).162D14 = C14.1202+ 1+4 | φ: D14/D7 → C2 ⊆ Out C2×D4 | 112 | | (C2xD4).162D14 | 448,1106 |
(C2×D4).163D14 = C14.1212+ 1+4 | φ: D14/D7 → C2 ⊆ Out C2×D4 | 112 | | (C2xD4).163D14 | 448,1107 |
(C2×D4).164D14 = C14.822- 1+4 | φ: D14/D7 → C2 ⊆ Out C2×D4 | 224 | | (C2xD4).164D14 | 448,1108 |
(C2×D4).165D14 = C4⋊C4⋊28D14 | φ: D14/D7 → C2 ⊆ Out C2×D4 | 112 | | (C2xD4).165D14 | 448,1109 |
(C2×D4).166D14 = C14.1222+ 1+4 | φ: D14/D7 → C2 ⊆ Out C2×D4 | 112 | | (C2xD4).166D14 | 448,1111 |
(C2×D4).167D14 = C14.852- 1+4 | φ: D14/D7 → C2 ⊆ Out C2×D4 | 224 | | (C2xD4).167D14 | 448,1118 |
(C2×D4).168D14 = C42.233D14 | φ: D14/D7 → C2 ⊆ Out C2×D4 | 224 | | (C2xD4).168D14 | 448,1121 |
(C2×D4).169D14 = C42.139D14 | φ: D14/D7 → C2 ⊆ Out C2×D4 | 224 | | (C2xD4).169D14 | 448,1124 |
(C2×D4).170D14 = D7×C4.4D4 | φ: D14/D7 → C2 ⊆ Out C2×D4 | 112 | | (C2xD4).170D14 | 448,1126 |
(C2×D4).171D14 = C42⋊18D14 | φ: D14/D7 → C2 ⊆ Out C2×D4 | 112 | | (C2xD4).171D14 | 448,1127 |
(C2×D4).172D14 = C42.141D14 | φ: D14/D7 → C2 ⊆ Out C2×D4 | 224 | | (C2xD4).172D14 | 448,1128 |
(C2×D4).173D14 = D28⋊10D4 | φ: D14/D7 → C2 ⊆ Out C2×D4 | 112 | | (C2xD4).173D14 | 448,1129 |
(C2×D4).174D14 = Dic14⋊10D4 | φ: D14/D7 → C2 ⊆ Out C2×D4 | 224 | | (C2xD4).174D14 | 448,1130 |
(C2×D4).175D14 = C42.234D14 | φ: D14/D7 → C2 ⊆ Out C2×D4 | 224 | | (C2xD4).175D14 | 448,1133 |
(C2×D4).176D14 = C42.143D14 | φ: D14/D7 → C2 ⊆ Out C2×D4 | 224 | | (C2xD4).176D14 | 448,1134 |
(C2×D4).177D14 = C42.144D14 | φ: D14/D7 → C2 ⊆ Out C2×D4 | 224 | | (C2xD4).177D14 | 448,1135 |
(C2×D4).178D14 = C42.238D14 | φ: D14/D7 → C2 ⊆ Out C2×D4 | 224 | | (C2xD4).178D14 | 448,1169 |
(C2×D4).179D14 = C42.168D14 | φ: D14/D7 → C2 ⊆ Out C2×D4 | 224 | | (C2xD4).179D14 | 448,1172 |
(C2×D4).180D14 = C2×D8⋊3D7 | φ: D14/D7 → C2 ⊆ Out C2×D4 | 224 | | (C2xD4).180D14 | 448,1209 |
(C2×D4).181D14 = C2×D7×SD16 | φ: D14/D7 → C2 ⊆ Out C2×D4 | 112 | | (C2xD4).181D14 | 448,1211 |
(C2×D4).182D14 = C2×D56⋊C2 | φ: D14/D7 → C2 ⊆ Out C2×D4 | 112 | | (C2xD4).182D14 | 448,1212 |
(C2×D4).183D14 = C2×SD16⋊D7 | φ: D14/D7 → C2 ⊆ Out C2×D4 | 224 | | (C2xD4).183D14 | 448,1213 |
(C2×D4).184D14 = C2×SD16⋊3D7 | φ: D14/D7 → C2 ⊆ Out C2×D4 | 224 | | (C2xD4).184D14 | 448,1214 |
(C2×D4).185D14 = C28.50D8 | φ: D14/C14 → C2 ⊆ Out C2×D4 | 224 | | (C2xD4).185D14 | 448,541 |
(C2×D4).186D14 = C28.38SD16 | φ: D14/C14 → C2 ⊆ Out C2×D4 | 224 | | (C2xD4).186D14 | 448,542 |
(C2×D4).187D14 = D4.3Dic14 | φ: D14/C14 → C2 ⊆ Out C2×D4 | 224 | | (C2xD4).187D14 | 448,543 |
(C2×D4).188D14 = C4×D4⋊D7 | φ: D14/C14 → C2 ⊆ Out C2×D4 | 224 | | (C2xD4).188D14 | 448,547 |
(C2×D4).189D14 = C42.48D14 | φ: D14/C14 → C2 ⊆ Out C2×D4 | 224 | | (C2xD4).189D14 | 448,548 |
(C2×D4).190D14 = C28⋊7D8 | φ: D14/C14 → C2 ⊆ Out C2×D4 | 224 | | (C2xD4).190D14 | 448,549 |
(C2×D4).191D14 = D4.1D28 | φ: D14/C14 → C2 ⊆ Out C2×D4 | 224 | | (C2xD4).191D14 | 448,550 |
(C2×D4).192D14 = C4×D4.D7 | φ: D14/C14 → C2 ⊆ Out C2×D4 | 224 | | (C2xD4).192D14 | 448,551 |
(C2×D4).193D14 = C42.51D14 | φ: D14/C14 → C2 ⊆ Out C2×D4 | 224 | | (C2xD4).193D14 | 448,552 |
(C2×D4).194D14 = D4.2D28 | φ: D14/C14 → C2 ⊆ Out C2×D4 | 224 | | (C2xD4).194D14 | 448,553 |
(C2×D4).195D14 = C2×D4⋊Dic7 | φ: D14/C14 → C2 ⊆ Out C2×D4 | 224 | | (C2xD4).195D14 | 448,748 |
(C2×D4).196D14 = (D4×C14)⋊6C4 | φ: D14/C14 → C2 ⊆ Out C2×D4 | 112 | | (C2xD4).196D14 | 448,749 |
(C2×D4).197D14 = C2×C28.D4 | φ: D14/C14 → C2 ⊆ Out C2×D4 | 112 | | (C2xD4).197D14 | 448,750 |
(C2×D4).198D14 = (C2×C14)⋊8D8 | φ: D14/C14 → C2 ⊆ Out C2×D4 | 112 | | (C2xD4).198D14 | 448,751 |
(C2×D4).199D14 = (C7×D4).31D4 | φ: D14/C14 → C2 ⊆ Out C2×D4 | 112 | | (C2xD4).199D14 | 448,752 |
(C2×D4).200D14 = C2×C23⋊Dic7 | φ: D14/C14 → C2 ⊆ Out C2×D4 | 112 | | (C2xD4).200D14 | 448,753 |
(C2×D4).201D14 = C4○D4⋊Dic7 | φ: D14/C14 → C2 ⊆ Out C2×D4 | 224 | | (C2xD4).201D14 | 448,766 |
(C2×D4).202D14 = C28.(C2×D4) | φ: D14/C14 → C2 ⊆ Out C2×D4 | 224 | | (C2xD4).202D14 | 448,767 |
(C2×D4).203D14 = (D4×C14).16C4 | φ: D14/C14 → C2 ⊆ Out C2×D4 | 112 | 4 | (C2xD4).203D14 | 448,771 |
(C2×D4).204D14 = (C7×D4)⋊14D4 | φ: D14/C14 → C2 ⊆ Out C2×D4 | 224 | | (C2xD4).204D14 | 448,772 |
(C2×D4).205D14 = (C7×D4).32D4 | φ: D14/C14 → C2 ⊆ Out C2×D4 | 224 | | (C2xD4).205D14 | 448,773 |
(C2×D4).206D14 = (D4×C14)⋊10C4 | φ: D14/C14 → C2 ⊆ Out C2×D4 | 112 | 4 | (C2xD4).206D14 | 448,774 |
(C2×D4).207D14 = C42.102D14 | φ: D14/C14 → C2 ⊆ Out C2×D4 | 224 | | (C2xD4).207D14 | 448,991 |
(C2×D4).208D14 = C42.104D14 | φ: D14/C14 → C2 ⊆ Out C2×D4 | 224 | | (C2xD4).208D14 | 448,993 |
(C2×D4).209D14 = C42.105D14 | φ: D14/C14 → C2 ⊆ Out C2×D4 | 224 | | (C2xD4).209D14 | 448,994 |
(C2×D4).210D14 = C42.106D14 | φ: D14/C14 → C2 ⊆ Out C2×D4 | 224 | | (C2xD4).210D14 | 448,995 |
(C2×D4).211D14 = C42⋊12D14 | φ: D14/C14 → C2 ⊆ Out C2×D4 | 112 | | (C2xD4).211D14 | 448,1000 |
(C2×D4).212D14 = C42.228D14 | φ: D14/C14 → C2 ⊆ Out C2×D4 | 224 | | (C2xD4).212D14 | 448,1001 |
(C2×D4).213D14 = D28⋊23D4 | φ: D14/C14 → C2 ⊆ Out C2×D4 | 112 | | (C2xD4).213D14 | 448,1003 |
(C2×D4).214D14 = D28⋊24D4 | φ: D14/C14 → C2 ⊆ Out C2×D4 | 224 | | (C2xD4).214D14 | 448,1004 |
(C2×D4).215D14 = Dic14⋊23D4 | φ: D14/C14 → C2 ⊆ Out C2×D4 | 224 | | (C2xD4).215D14 | 448,1005 |
(C2×D4).216D14 = Dic14⋊24D4 | φ: D14/C14 → C2 ⊆ Out C2×D4 | 224 | | (C2xD4).216D14 | 448,1006 |
(C2×D4).217D14 = C42⋊16D14 | φ: D14/C14 → C2 ⊆ Out C2×D4 | 112 | | (C2xD4).217D14 | 448,1009 |
(C2×D4).218D14 = C42.229D14 | φ: D14/C14 → C2 ⊆ Out C2×D4 | 224 | | (C2xD4).218D14 | 448,1010 |
(C2×D4).219D14 = C42.113D14 | φ: D14/C14 → C2 ⊆ Out C2×D4 | 224 | | (C2xD4).219D14 | 448,1011 |
(C2×D4).220D14 = C42.114D14 | φ: D14/C14 → C2 ⊆ Out C2×D4 | 224 | | (C2xD4).220D14 | 448,1012 |
(C2×D4).221D14 = C42⋊17D14 | φ: D14/C14 → C2 ⊆ Out C2×D4 | 112 | | (C2xD4).221D14 | 448,1013 |
(C2×D4).222D14 = C42.115D14 | φ: D14/C14 → C2 ⊆ Out C2×D4 | 224 | | (C2xD4).222D14 | 448,1014 |
(C2×D4).223D14 = C42.116D14 | φ: D14/C14 → C2 ⊆ Out C2×D4 | 224 | | (C2xD4).223D14 | 448,1015 |
(C2×D4).224D14 = C42.117D14 | φ: D14/C14 → C2 ⊆ Out C2×D4 | 224 | | (C2xD4).224D14 | 448,1016 |
(C2×D4).225D14 = C42.118D14 | φ: D14/C14 → C2 ⊆ Out C2×D4 | 224 | | (C2xD4).225D14 | 448,1017 |
(C2×D4).226D14 = C42.119D14 | φ: D14/C14 → C2 ⊆ Out C2×D4 | 224 | | (C2xD4).226D14 | 448,1018 |
(C2×D4).227D14 = C22×D4.D7 | φ: D14/C14 → C2 ⊆ Out C2×D4 | 224 | | (C2xD4).227D14 | 448,1247 |
(C2×D4).228D14 = C2×C23.18D14 | φ: D14/C14 → C2 ⊆ Out C2×D4 | 224 | | (C2xD4).228D14 | 448,1249 |
(C2×D4).229D14 = C2×C28.17D4 | φ: D14/C14 → C2 ⊆ Out C2×D4 | 224 | | (C2xD4).229D14 | 448,1250 |
(C2×D4).230D14 = C24.41D14 | φ: D14/C14 → C2 ⊆ Out C2×D4 | 112 | | (C2xD4).230D14 | 448,1258 |
(C2×D4).231D14 = C24.42D14 | φ: D14/C14 → C2 ⊆ Out C2×D4 | 112 | | (C2xD4).231D14 | 448,1259 |
(C2×D4).232D14 = C2×D4.8D14 | φ: D14/C14 → C2 ⊆ Out C2×D4 | 224 | | (C2xD4).232D14 | 448,1274 |
(C2×D4).233D14 = C2×D4.9D14 | φ: D14/C14 → C2 ⊆ Out C2×D4 | 224 | | (C2xD4).233D14 | 448,1276 |
(C2×D4).234D14 = C14.1042- 1+4 | φ: D14/C14 → C2 ⊆ Out C2×D4 | 224 | | (C2xD4).234D14 | 448,1277 |
(C2×D4).235D14 = C14.1052- 1+4 | φ: D14/C14 → C2 ⊆ Out C2×D4 | 224 | | (C2xD4).235D14 | 448,1278 |
(C2×D4).236D14 = C14.1072- 1+4 | φ: D14/C14 → C2 ⊆ Out C2×D4 | 224 | | (C2xD4).236D14 | 448,1284 |
(C2×D4).237D14 = (C2×C28)⋊17D4 | φ: D14/C14 → C2 ⊆ Out C2×D4 | 224 | | (C2xD4).237D14 | 448,1285 |
(C2×D4).238D14 = C14.1082- 1+4 | φ: D14/C14 → C2 ⊆ Out C2×D4 | 224 | | (C2xD4).238D14 | 448,1286 |
(C2×D4).239D14 = C14.1482+ 1+4 | φ: D14/C14 → C2 ⊆ Out C2×D4 | 224 | | (C2xD4).239D14 | 448,1287 |
(C2×D4).240D14 = C4×D4⋊2D7 | φ: trivial image | 224 | | (C2xD4).240D14 | 448,989 |
(C2×D4).241D14 = D4×Dic14 | φ: trivial image | 224 | | (C2xD4).241D14 | 448,990 |
(C2×D4).242D14 = D4⋊5Dic14 | φ: trivial image | 224 | | (C2xD4).242D14 | 448,992 |
(C2×D4).243D14 = D4⋊6Dic14 | φ: trivial image | 224 | | (C2xD4).243D14 | 448,996 |
(C2×D4).244D14 = C4×D4×D7 | φ: trivial image | 112 | | (C2xD4).244D14 | 448,997 |
(C2×D4).245D14 = C42⋊11D14 | φ: trivial image | 112 | | (C2xD4).245D14 | 448,998 |
(C2×D4).246D14 = C42.108D14 | φ: trivial image | 224 | | (C2xD4).246D14 | 448,999 |
(C2×D4).247D14 = D4×D28 | φ: trivial image | 112 | | (C2xD4).247D14 | 448,1002 |
(C2×D4).248D14 = D4⋊5D28 | φ: trivial image | 112 | | (C2xD4).248D14 | 448,1007 |
(C2×D4).249D14 = D4⋊6D28 | φ: trivial image | 224 | | (C2xD4).249D14 | 448,1008 |
(C2×D4).250D14 = C2×D4×Dic7 | φ: trivial image | 224 | | (C2xD4).250D14 | 448,1248 |
(C2×D4).251D14 = C24.38D14 | φ: trivial image | 112 | | (C2xD4).251D14 | 448,1251 |
(C2×D4).252D14 = C4○D4×Dic7 | φ: trivial image | 224 | | (C2xD4).252D14 | 448,1279 |
(C2×D4).253D14 = C14.1062- 1+4 | φ: trivial image | 224 | | (C2xD4).253D14 | 448,1280 |
(C2×D4).254D14 = C2×D4.10D14 | φ: trivial image | 224 | | (C2xD4).254D14 | 448,1377 |