Copied to
clipboard

G = D4×C19⋊C3order 456 = 23·3·19

Direct product of D4 and C19⋊C3

direct product, metacyclic, supersoluble, monomial

Aliases: D4×C19⋊C3, C763C6, (D4×C19)⋊C3, C193(C3×D4), (C2×C38)⋊5C6, C38.7(C2×C6), C4⋊(C2×C19⋊C3), (C4×C19⋊C3)⋊3C2, C222(C2×C19⋊C3), (C22×C19⋊C3)⋊3C2, C2.2(C22×C19⋊C3), (C2×C19⋊C3).7C22, SmallGroup(456,20)

Series: Derived Chief Lower central Upper central

C1C38 — D4×C19⋊C3
C1C19C38C2×C19⋊C3C22×C19⋊C3 — D4×C19⋊C3
C19C38 — D4×C19⋊C3
C1C2D4

Generators and relations for D4×C19⋊C3
 G = < a,b,c,d | a4=b2=c19=d3=1, bab=a-1, ac=ca, ad=da, bc=cb, bd=db, dcd-1=c11 >

2C2
2C2
19C3
19C6
38C6
38C6
2C38
2C38
19C2×C6
19C2×C6
19C12
2C2×C19⋊C3
2C2×C19⋊C3
19C3×D4

Smallest permutation representation of D4×C19⋊C3
On 76 points
Generators in S76
(1 39 20 58)(2 40 21 59)(3 41 22 60)(4 42 23 61)(5 43 24 62)(6 44 25 63)(7 45 26 64)(8 46 27 65)(9 47 28 66)(10 48 29 67)(11 49 30 68)(12 50 31 69)(13 51 32 70)(14 52 33 71)(15 53 34 72)(16 54 35 73)(17 55 36 74)(18 56 37 75)(19 57 38 76)
(39 58)(40 59)(41 60)(42 61)(43 62)(44 63)(45 64)(46 65)(47 66)(48 67)(49 68)(50 69)(51 70)(52 71)(53 72)(54 73)(55 74)(56 75)(57 76)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19)(20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38)(39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57)(58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76)
(2 8 12)(3 15 4)(5 10 7)(6 17 18)(9 19 13)(11 14 16)(21 27 31)(22 34 23)(24 29 26)(25 36 37)(28 38 32)(30 33 35)(40 46 50)(41 53 42)(43 48 45)(44 55 56)(47 57 51)(49 52 54)(59 65 69)(60 72 61)(62 67 64)(63 74 75)(66 76 70)(68 71 73)

G:=sub<Sym(76)| (1,39,20,58)(2,40,21,59)(3,41,22,60)(4,42,23,61)(5,43,24,62)(6,44,25,63)(7,45,26,64)(8,46,27,65)(9,47,28,66)(10,48,29,67)(11,49,30,68)(12,50,31,69)(13,51,32,70)(14,52,33,71)(15,53,34,72)(16,54,35,73)(17,55,36,74)(18,56,37,75)(19,57,38,76), (39,58)(40,59)(41,60)(42,61)(43,62)(44,63)(45,64)(46,65)(47,66)(48,67)(49,68)(50,69)(51,70)(52,71)(53,72)(54,73)(55,74)(56,75)(57,76), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19)(20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38)(39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57)(58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76), (2,8,12)(3,15,4)(5,10,7)(6,17,18)(9,19,13)(11,14,16)(21,27,31)(22,34,23)(24,29,26)(25,36,37)(28,38,32)(30,33,35)(40,46,50)(41,53,42)(43,48,45)(44,55,56)(47,57,51)(49,52,54)(59,65,69)(60,72,61)(62,67,64)(63,74,75)(66,76,70)(68,71,73)>;

G:=Group( (1,39,20,58)(2,40,21,59)(3,41,22,60)(4,42,23,61)(5,43,24,62)(6,44,25,63)(7,45,26,64)(8,46,27,65)(9,47,28,66)(10,48,29,67)(11,49,30,68)(12,50,31,69)(13,51,32,70)(14,52,33,71)(15,53,34,72)(16,54,35,73)(17,55,36,74)(18,56,37,75)(19,57,38,76), (39,58)(40,59)(41,60)(42,61)(43,62)(44,63)(45,64)(46,65)(47,66)(48,67)(49,68)(50,69)(51,70)(52,71)(53,72)(54,73)(55,74)(56,75)(57,76), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19)(20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38)(39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57)(58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76), (2,8,12)(3,15,4)(5,10,7)(6,17,18)(9,19,13)(11,14,16)(21,27,31)(22,34,23)(24,29,26)(25,36,37)(28,38,32)(30,33,35)(40,46,50)(41,53,42)(43,48,45)(44,55,56)(47,57,51)(49,52,54)(59,65,69)(60,72,61)(62,67,64)(63,74,75)(66,76,70)(68,71,73) );

G=PermutationGroup([[(1,39,20,58),(2,40,21,59),(3,41,22,60),(4,42,23,61),(5,43,24,62),(6,44,25,63),(7,45,26,64),(8,46,27,65),(9,47,28,66),(10,48,29,67),(11,49,30,68),(12,50,31,69),(13,51,32,70),(14,52,33,71),(15,53,34,72),(16,54,35,73),(17,55,36,74),(18,56,37,75),(19,57,38,76)], [(39,58),(40,59),(41,60),(42,61),(43,62),(44,63),(45,64),(46,65),(47,66),(48,67),(49,68),(50,69),(51,70),(52,71),(53,72),(54,73),(55,74),(56,75),(57,76)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19),(20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38),(39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57),(58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76)], [(2,8,12),(3,15,4),(5,10,7),(6,17,18),(9,19,13),(11,14,16),(21,27,31),(22,34,23),(24,29,26),(25,36,37),(28,38,32),(30,33,35),(40,46,50),(41,53,42),(43,48,45),(44,55,56),(47,57,51),(49,52,54),(59,65,69),(60,72,61),(62,67,64),(63,74,75),(66,76,70),(68,71,73)]])

45 conjugacy classes

class 1 2A2B2C3A3B 4 6A6B6C6D6E6F12A12B19A···19F38A···38F38G···38R76A···76F
order1222334666666121219···1938···3838···3876···76
size11221919219193838383838383···33···36···66···6

45 irreducible representations

dim111111223336
type++++
imageC1C2C2C3C6C6D4C3×D4C19⋊C3C2×C19⋊C3C2×C19⋊C3D4×C19⋊C3
kernelD4×C19⋊C3C4×C19⋊C3C22×C19⋊C3D4×C19C76C2×C38C19⋊C3C19D4C4C22C1
# reps1122241266126

Matrix representation of D4×C19⋊C3 in GL5(𝔽229)

22816000
1431000
00100
00010
00001
,
10000
86228000
00100
00010
00001
,
10000
01000
0051251
0013181108
00102512
,
940000
094000
0073138157
00913990
0056197117

G:=sub<GL(5,GF(229))| [228,143,0,0,0,16,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[1,86,0,0,0,0,228,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[1,0,0,0,0,0,1,0,0,0,0,0,51,13,102,0,0,25,181,51,0,0,1,108,2],[94,0,0,0,0,0,94,0,0,0,0,0,73,91,56,0,0,138,39,197,0,0,157,90,117] >;

D4×C19⋊C3 in GAP, Magma, Sage, TeX

D_4\times C_{19}\rtimes C_3
% in TeX

G:=Group("D4xC19:C3");
// GroupNames label

G:=SmallGroup(456,20);
// by ID

G=gap.SmallGroup(456,20);
# by ID

G:=PCGroup([5,-2,-2,-3,-2,-19,141,1064]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^2=c^19=d^3=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d^-1=c^11>;
// generators/relations

Export

Subgroup lattice of D4×C19⋊C3 in TeX

׿
×
𝔽