Copied to
clipboard

G = C2×C4×C19⋊C3order 456 = 23·3·19

Direct product of C2×C4 and C19⋊C3

direct product, metacyclic, supersoluble, monomial, A-group

Aliases: C2×C4×C19⋊C3, C764C6, C382C12, (C2×C76)⋊C3, C193(C2×C12), (C2×C38).2C6, C38.6(C2×C6), C22.(C2×C19⋊C3), C2.1(C22×C19⋊C3), (C22×C19⋊C3).2C2, (C2×C19⋊C3).6C22, SmallGroup(456,19)

Series: Derived Chief Lower central Upper central

C1C19 — C2×C4×C19⋊C3
C1C19C38C2×C19⋊C3C22×C19⋊C3 — C2×C4×C19⋊C3
C19 — C2×C4×C19⋊C3
C1C2×C4

Generators and relations for C2×C4×C19⋊C3
 G = < a,b,c,d | a2=b4=c19=d3=1, ab=ba, ac=ca, ad=da, bc=cb, bd=db, dcd-1=c11 >

19C3
19C6
19C6
19C6
19C12
19C2×C6
19C12
19C2×C12

Smallest permutation representation of C2×C4×C19⋊C3
On 152 points
Generators in S152
(1 96)(2 97)(3 98)(4 99)(5 100)(6 101)(7 102)(8 103)(9 104)(10 105)(11 106)(12 107)(13 108)(14 109)(15 110)(16 111)(17 112)(18 113)(19 114)(20 77)(21 78)(22 79)(23 80)(24 81)(25 82)(26 83)(27 84)(28 85)(29 86)(30 87)(31 88)(32 89)(33 90)(34 91)(35 92)(36 93)(37 94)(38 95)(39 134)(40 135)(41 136)(42 137)(43 138)(44 139)(45 140)(46 141)(47 142)(48 143)(49 144)(50 145)(51 146)(52 147)(53 148)(54 149)(55 150)(56 151)(57 152)(58 115)(59 116)(60 117)(61 118)(62 119)(63 120)(64 121)(65 122)(66 123)(67 124)(68 125)(69 126)(70 127)(71 128)(72 129)(73 130)(74 131)(75 132)(76 133)
(1 39 20 58)(2 40 21 59)(3 41 22 60)(4 42 23 61)(5 43 24 62)(6 44 25 63)(7 45 26 64)(8 46 27 65)(9 47 28 66)(10 48 29 67)(11 49 30 68)(12 50 31 69)(13 51 32 70)(14 52 33 71)(15 53 34 72)(16 54 35 73)(17 55 36 74)(18 56 37 75)(19 57 38 76)(77 115 96 134)(78 116 97 135)(79 117 98 136)(80 118 99 137)(81 119 100 138)(82 120 101 139)(83 121 102 140)(84 122 103 141)(85 123 104 142)(86 124 105 143)(87 125 106 144)(88 126 107 145)(89 127 108 146)(90 128 109 147)(91 129 110 148)(92 130 111 149)(93 131 112 150)(94 132 113 151)(95 133 114 152)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19)(20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38)(39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57)(58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76)(77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95)(96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114)(115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133)(134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152)
(2 8 12)(3 15 4)(5 10 7)(6 17 18)(9 19 13)(11 14 16)(21 27 31)(22 34 23)(24 29 26)(25 36 37)(28 38 32)(30 33 35)(40 46 50)(41 53 42)(43 48 45)(44 55 56)(47 57 51)(49 52 54)(59 65 69)(60 72 61)(62 67 64)(63 74 75)(66 76 70)(68 71 73)(78 84 88)(79 91 80)(81 86 83)(82 93 94)(85 95 89)(87 90 92)(97 103 107)(98 110 99)(100 105 102)(101 112 113)(104 114 108)(106 109 111)(116 122 126)(117 129 118)(119 124 121)(120 131 132)(123 133 127)(125 128 130)(135 141 145)(136 148 137)(138 143 140)(139 150 151)(142 152 146)(144 147 149)

G:=sub<Sym(152)| (1,96)(2,97)(3,98)(4,99)(5,100)(6,101)(7,102)(8,103)(9,104)(10,105)(11,106)(12,107)(13,108)(14,109)(15,110)(16,111)(17,112)(18,113)(19,114)(20,77)(21,78)(22,79)(23,80)(24,81)(25,82)(26,83)(27,84)(28,85)(29,86)(30,87)(31,88)(32,89)(33,90)(34,91)(35,92)(36,93)(37,94)(38,95)(39,134)(40,135)(41,136)(42,137)(43,138)(44,139)(45,140)(46,141)(47,142)(48,143)(49,144)(50,145)(51,146)(52,147)(53,148)(54,149)(55,150)(56,151)(57,152)(58,115)(59,116)(60,117)(61,118)(62,119)(63,120)(64,121)(65,122)(66,123)(67,124)(68,125)(69,126)(70,127)(71,128)(72,129)(73,130)(74,131)(75,132)(76,133), (1,39,20,58)(2,40,21,59)(3,41,22,60)(4,42,23,61)(5,43,24,62)(6,44,25,63)(7,45,26,64)(8,46,27,65)(9,47,28,66)(10,48,29,67)(11,49,30,68)(12,50,31,69)(13,51,32,70)(14,52,33,71)(15,53,34,72)(16,54,35,73)(17,55,36,74)(18,56,37,75)(19,57,38,76)(77,115,96,134)(78,116,97,135)(79,117,98,136)(80,118,99,137)(81,119,100,138)(82,120,101,139)(83,121,102,140)(84,122,103,141)(85,123,104,142)(86,124,105,143)(87,125,106,144)(88,126,107,145)(89,127,108,146)(90,128,109,147)(91,129,110,148)(92,130,111,149)(93,131,112,150)(94,132,113,151)(95,133,114,152), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19)(20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38)(39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57)(58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76)(77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95)(96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114)(115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133)(134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152), (2,8,12)(3,15,4)(5,10,7)(6,17,18)(9,19,13)(11,14,16)(21,27,31)(22,34,23)(24,29,26)(25,36,37)(28,38,32)(30,33,35)(40,46,50)(41,53,42)(43,48,45)(44,55,56)(47,57,51)(49,52,54)(59,65,69)(60,72,61)(62,67,64)(63,74,75)(66,76,70)(68,71,73)(78,84,88)(79,91,80)(81,86,83)(82,93,94)(85,95,89)(87,90,92)(97,103,107)(98,110,99)(100,105,102)(101,112,113)(104,114,108)(106,109,111)(116,122,126)(117,129,118)(119,124,121)(120,131,132)(123,133,127)(125,128,130)(135,141,145)(136,148,137)(138,143,140)(139,150,151)(142,152,146)(144,147,149)>;

G:=Group( (1,96)(2,97)(3,98)(4,99)(5,100)(6,101)(7,102)(8,103)(9,104)(10,105)(11,106)(12,107)(13,108)(14,109)(15,110)(16,111)(17,112)(18,113)(19,114)(20,77)(21,78)(22,79)(23,80)(24,81)(25,82)(26,83)(27,84)(28,85)(29,86)(30,87)(31,88)(32,89)(33,90)(34,91)(35,92)(36,93)(37,94)(38,95)(39,134)(40,135)(41,136)(42,137)(43,138)(44,139)(45,140)(46,141)(47,142)(48,143)(49,144)(50,145)(51,146)(52,147)(53,148)(54,149)(55,150)(56,151)(57,152)(58,115)(59,116)(60,117)(61,118)(62,119)(63,120)(64,121)(65,122)(66,123)(67,124)(68,125)(69,126)(70,127)(71,128)(72,129)(73,130)(74,131)(75,132)(76,133), (1,39,20,58)(2,40,21,59)(3,41,22,60)(4,42,23,61)(5,43,24,62)(6,44,25,63)(7,45,26,64)(8,46,27,65)(9,47,28,66)(10,48,29,67)(11,49,30,68)(12,50,31,69)(13,51,32,70)(14,52,33,71)(15,53,34,72)(16,54,35,73)(17,55,36,74)(18,56,37,75)(19,57,38,76)(77,115,96,134)(78,116,97,135)(79,117,98,136)(80,118,99,137)(81,119,100,138)(82,120,101,139)(83,121,102,140)(84,122,103,141)(85,123,104,142)(86,124,105,143)(87,125,106,144)(88,126,107,145)(89,127,108,146)(90,128,109,147)(91,129,110,148)(92,130,111,149)(93,131,112,150)(94,132,113,151)(95,133,114,152), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19)(20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38)(39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57)(58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76)(77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95)(96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114)(115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133)(134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152), (2,8,12)(3,15,4)(5,10,7)(6,17,18)(9,19,13)(11,14,16)(21,27,31)(22,34,23)(24,29,26)(25,36,37)(28,38,32)(30,33,35)(40,46,50)(41,53,42)(43,48,45)(44,55,56)(47,57,51)(49,52,54)(59,65,69)(60,72,61)(62,67,64)(63,74,75)(66,76,70)(68,71,73)(78,84,88)(79,91,80)(81,86,83)(82,93,94)(85,95,89)(87,90,92)(97,103,107)(98,110,99)(100,105,102)(101,112,113)(104,114,108)(106,109,111)(116,122,126)(117,129,118)(119,124,121)(120,131,132)(123,133,127)(125,128,130)(135,141,145)(136,148,137)(138,143,140)(139,150,151)(142,152,146)(144,147,149) );

G=PermutationGroup([[(1,96),(2,97),(3,98),(4,99),(5,100),(6,101),(7,102),(8,103),(9,104),(10,105),(11,106),(12,107),(13,108),(14,109),(15,110),(16,111),(17,112),(18,113),(19,114),(20,77),(21,78),(22,79),(23,80),(24,81),(25,82),(26,83),(27,84),(28,85),(29,86),(30,87),(31,88),(32,89),(33,90),(34,91),(35,92),(36,93),(37,94),(38,95),(39,134),(40,135),(41,136),(42,137),(43,138),(44,139),(45,140),(46,141),(47,142),(48,143),(49,144),(50,145),(51,146),(52,147),(53,148),(54,149),(55,150),(56,151),(57,152),(58,115),(59,116),(60,117),(61,118),(62,119),(63,120),(64,121),(65,122),(66,123),(67,124),(68,125),(69,126),(70,127),(71,128),(72,129),(73,130),(74,131),(75,132),(76,133)], [(1,39,20,58),(2,40,21,59),(3,41,22,60),(4,42,23,61),(5,43,24,62),(6,44,25,63),(7,45,26,64),(8,46,27,65),(9,47,28,66),(10,48,29,67),(11,49,30,68),(12,50,31,69),(13,51,32,70),(14,52,33,71),(15,53,34,72),(16,54,35,73),(17,55,36,74),(18,56,37,75),(19,57,38,76),(77,115,96,134),(78,116,97,135),(79,117,98,136),(80,118,99,137),(81,119,100,138),(82,120,101,139),(83,121,102,140),(84,122,103,141),(85,123,104,142),(86,124,105,143),(87,125,106,144),(88,126,107,145),(89,127,108,146),(90,128,109,147),(91,129,110,148),(92,130,111,149),(93,131,112,150),(94,132,113,151),(95,133,114,152)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19),(20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38),(39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57),(58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76),(77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95),(96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114),(115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133),(134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152)], [(2,8,12),(3,15,4),(5,10,7),(6,17,18),(9,19,13),(11,14,16),(21,27,31),(22,34,23),(24,29,26),(25,36,37),(28,38,32),(30,33,35),(40,46,50),(41,53,42),(43,48,45),(44,55,56),(47,57,51),(49,52,54),(59,65,69),(60,72,61),(62,67,64),(63,74,75),(66,76,70),(68,71,73),(78,84,88),(79,91,80),(81,86,83),(82,93,94),(85,95,89),(87,90,92),(97,103,107),(98,110,99),(100,105,102),(101,112,113),(104,114,108),(106,109,111),(116,122,126),(117,129,118),(119,124,121),(120,131,132),(123,133,127),(125,128,130),(135,141,145),(136,148,137),(138,143,140),(139,150,151),(142,152,146),(144,147,149)]])

72 conjugacy classes

class 1 2A2B2C3A3B4A4B4C4D6A···6F12A···12H19A···19F38A···38R76A···76X
order12223344446···612···1219···1938···3876···76
size11111919111119···1919···193···33···33···3

72 irreducible representations

dim111111113333
type+++
imageC1C2C2C3C4C6C6C12C19⋊C3C2×C19⋊C3C2×C19⋊C3C4×C19⋊C3
kernelC2×C4×C19⋊C3C4×C19⋊C3C22×C19⋊C3C2×C76C2×C19⋊C3C76C2×C38C38C2×C4C4C22C2
# reps12124428612624

Matrix representation of C2×C4×C19⋊C3 in GL4(𝔽229) generated by

228000
022800
002280
000228
,
1000
012200
001220
000122
,
1000
01012231
01022231
01012241
,
94000
02081497
0001
05111821
G:=sub<GL(4,GF(229))| [228,0,0,0,0,228,0,0,0,0,228,0,0,0,0,228],[1,0,0,0,0,122,0,0,0,0,122,0,0,0,0,122],[1,0,0,0,0,101,102,101,0,223,223,224,0,1,1,1],[94,0,0,0,0,208,0,51,0,149,0,118,0,7,1,21] >;

C2×C4×C19⋊C3 in GAP, Magma, Sage, TeX

C_2\times C_4\times C_{19}\rtimes C_3
% in TeX

G:=Group("C2xC4xC19:C3");
// GroupNames label

G:=SmallGroup(456,19);
// by ID

G=gap.SmallGroup(456,19);
# by ID

G:=PCGroup([5,-2,-2,-3,-2,-19,66,1064]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^4=c^19=d^3=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d^-1=c^11>;
// generators/relations

Export

Subgroup lattice of C2×C4×C19⋊C3 in TeX

׿
×
𝔽