Extensions 1→N→G→Q→1 with N=C10 and Q=C4xDic3

Direct product G=NxQ with N=C10 and Q=C4xDic3
dρLabelID
Dic3xC2xC20480Dic3xC2xC20480,801

Semidirect products G=N:Q with N=C10 and Q=C4xDic3
extensionφ:Q→Aut NdρLabelID
C10:1(C4xDic3) = C2xDic3xF5φ: C4xDic3/Dic3C4 ⊆ Aut C10120C10:1(C4xDic3)480,998
C10:2(C4xDic3) = C2xC4xC3:F5φ: C4xDic3/C12C4 ⊆ Aut C10120C10:2(C4xDic3)480,1063
C10:3(C4xDic3) = C2xDic3xDic5φ: C4xDic3/C2xDic3C2 ⊆ Aut C10480C10:3(C4xDic3)480,603
C10:4(C4xDic3) = C2xC4xDic15φ: C4xDic3/C2xC12C2 ⊆ Aut C10480C10:4(C4xDic3)480,887

Non-split extensions G=N.Q with N=C10 and Q=C4xDic3
extensionφ:Q→Aut NdρLabelID
C10.1(C4xDic3) = F5xC3:C8φ: C4xDic3/Dic3C4 ⊆ Aut C101208C10.1(C4xDic3)480,223
C10.2(C4xDic3) = C30.C42φ: C4xDic3/Dic3C4 ⊆ Aut C101208C10.2(C4xDic3)480,224
C10.3(C4xDic3) = C30.3C42φ: C4xDic3/Dic3C4 ⊆ Aut C101208C10.3(C4xDic3)480,225
C10.4(C4xDic3) = C30.4C42φ: C4xDic3/Dic3C4 ⊆ Aut C101208C10.4(C4xDic3)480,226
C10.5(C4xDic3) = D10.20D12φ: C4xDic3/Dic3C4 ⊆ Aut C10120C10.5(C4xDic3)480,243
C10.6(C4xDic3) = Dic3xC5:C8φ: C4xDic3/Dic3C4 ⊆ Aut C10480C10.6(C4xDic3)480,244
C10.7(C4xDic3) = C30.M4(2)φ: C4xDic3/Dic3C4 ⊆ Aut C10480C10.7(C4xDic3)480,245
C10.8(C4xDic3) = C8xC3:F5φ: C4xDic3/C12C4 ⊆ Aut C101204C10.8(C4xDic3)480,296
C10.9(C4xDic3) = C24:F5φ: C4xDic3/C12C4 ⊆ Aut C101204C10.9(C4xDic3)480,297
C10.10(C4xDic3) = C4xC15:C8φ: C4xDic3/C12C4 ⊆ Aut C10480C10.10(C4xDic3)480,305
C10.11(C4xDic3) = C30.11C42φ: C4xDic3/C12C4 ⊆ Aut C10480C10.11(C4xDic3)480,307
C10.12(C4xDic3) = D10.10D12φ: C4xDic3/C12C4 ⊆ Aut C10120C10.12(C4xDic3)480,311
C10.13(C4xDic3) = Dic5xC3:C8φ: C4xDic3/C2xDic3C2 ⊆ Aut C10480C10.13(C4xDic3)480,25
C10.14(C4xDic3) = Dic3xC5:2C8φ: C4xDic3/C2xDic3C2 ⊆ Aut C10480C10.14(C4xDic3)480,26
C10.15(C4xDic3) = Dic15:4C8φ: C4xDic3/C2xDic3C2 ⊆ Aut C10480C10.15(C4xDic3)480,27
C10.16(C4xDic3) = C30.21C42φ: C4xDic3/C2xDic3C2 ⊆ Aut C10480C10.16(C4xDic3)480,28
C10.17(C4xDic3) = C30.22C42φ: C4xDic3/C2xDic3C2 ⊆ Aut C10480C10.17(C4xDic3)480,29
C10.18(C4xDic3) = C30.23C42φ: C4xDic3/C2xDic3C2 ⊆ Aut C10480C10.18(C4xDic3)480,30
C10.19(C4xDic3) = C30.24C42φ: C4xDic3/C2xDic3C2 ⊆ Aut C10480C10.19(C4xDic3)480,70
C10.20(C4xDic3) = C4xC15:3C8φ: C4xDic3/C2xC12C2 ⊆ Aut C10480C10.20(C4xDic3)480,162
C10.21(C4xDic3) = C42.D15φ: C4xDic3/C2xC12C2 ⊆ Aut C10480C10.21(C4xDic3)480,163
C10.22(C4xDic3) = C8xDic15φ: C4xDic3/C2xC12C2 ⊆ Aut C10480C10.22(C4xDic3)480,173
C10.23(C4xDic3) = C120:13C4φ: C4xDic3/C2xC12C2 ⊆ Aut C10480C10.23(C4xDic3)480,175
C10.24(C4xDic3) = C30.29C42φ: C4xDic3/C2xC12C2 ⊆ Aut C10480C10.24(C4xDic3)480,191
C10.25(C4xDic3) = C20xC3:C8central extension (φ=1)480C10.25(C4xDic3)480,121
C10.26(C4xDic3) = C5xC42.S3central extension (φ=1)480C10.26(C4xDic3)480,122
C10.27(C4xDic3) = Dic3xC40central extension (φ=1)480C10.27(C4xDic3)480,132
C10.28(C4xDic3) = C5xC24:C4central extension (φ=1)480C10.28(C4xDic3)480,134
C10.29(C4xDic3) = C5xC6.C42central extension (φ=1)480C10.29(C4xDic3)480,150

׿
x
:
Z
F
o
wr
Q
<