extension | φ:Q→Aut N | d | ρ | Label | ID |
C10.1(C4xDic3) = F5xC3:C8 | φ: C4xDic3/Dic3 → C4 ⊆ Aut C10 | 120 | 8 | C10.1(C4xDic3) | 480,223 |
C10.2(C4xDic3) = C30.C42 | φ: C4xDic3/Dic3 → C4 ⊆ Aut C10 | 120 | 8 | C10.2(C4xDic3) | 480,224 |
C10.3(C4xDic3) = C30.3C42 | φ: C4xDic3/Dic3 → C4 ⊆ Aut C10 | 120 | 8 | C10.3(C4xDic3) | 480,225 |
C10.4(C4xDic3) = C30.4C42 | φ: C4xDic3/Dic3 → C4 ⊆ Aut C10 | 120 | 8 | C10.4(C4xDic3) | 480,226 |
C10.5(C4xDic3) = D10.20D12 | φ: C4xDic3/Dic3 → C4 ⊆ Aut C10 | 120 | | C10.5(C4xDic3) | 480,243 |
C10.6(C4xDic3) = Dic3xC5:C8 | φ: C4xDic3/Dic3 → C4 ⊆ Aut C10 | 480 | | C10.6(C4xDic3) | 480,244 |
C10.7(C4xDic3) = C30.M4(2) | φ: C4xDic3/Dic3 → C4 ⊆ Aut C10 | 480 | | C10.7(C4xDic3) | 480,245 |
C10.8(C4xDic3) = C8xC3:F5 | φ: C4xDic3/C12 → C4 ⊆ Aut C10 | 120 | 4 | C10.8(C4xDic3) | 480,296 |
C10.9(C4xDic3) = C24:F5 | φ: C4xDic3/C12 → C4 ⊆ Aut C10 | 120 | 4 | C10.9(C4xDic3) | 480,297 |
C10.10(C4xDic3) = C4xC15:C8 | φ: C4xDic3/C12 → C4 ⊆ Aut C10 | 480 | | C10.10(C4xDic3) | 480,305 |
C10.11(C4xDic3) = C30.11C42 | φ: C4xDic3/C12 → C4 ⊆ Aut C10 | 480 | | C10.11(C4xDic3) | 480,307 |
C10.12(C4xDic3) = D10.10D12 | φ: C4xDic3/C12 → C4 ⊆ Aut C10 | 120 | | C10.12(C4xDic3) | 480,311 |
C10.13(C4xDic3) = Dic5xC3:C8 | φ: C4xDic3/C2xDic3 → C2 ⊆ Aut C10 | 480 | | C10.13(C4xDic3) | 480,25 |
C10.14(C4xDic3) = Dic3xC5:2C8 | φ: C4xDic3/C2xDic3 → C2 ⊆ Aut C10 | 480 | | C10.14(C4xDic3) | 480,26 |
C10.15(C4xDic3) = Dic15:4C8 | φ: C4xDic3/C2xDic3 → C2 ⊆ Aut C10 | 480 | | C10.15(C4xDic3) | 480,27 |
C10.16(C4xDic3) = C30.21C42 | φ: C4xDic3/C2xDic3 → C2 ⊆ Aut C10 | 480 | | C10.16(C4xDic3) | 480,28 |
C10.17(C4xDic3) = C30.22C42 | φ: C4xDic3/C2xDic3 → C2 ⊆ Aut C10 | 480 | | C10.17(C4xDic3) | 480,29 |
C10.18(C4xDic3) = C30.23C42 | φ: C4xDic3/C2xDic3 → C2 ⊆ Aut C10 | 480 | | C10.18(C4xDic3) | 480,30 |
C10.19(C4xDic3) = C30.24C42 | φ: C4xDic3/C2xDic3 → C2 ⊆ Aut C10 | 480 | | C10.19(C4xDic3) | 480,70 |
C10.20(C4xDic3) = C4xC15:3C8 | φ: C4xDic3/C2xC12 → C2 ⊆ Aut C10 | 480 | | C10.20(C4xDic3) | 480,162 |
C10.21(C4xDic3) = C42.D15 | φ: C4xDic3/C2xC12 → C2 ⊆ Aut C10 | 480 | | C10.21(C4xDic3) | 480,163 |
C10.22(C4xDic3) = C8xDic15 | φ: C4xDic3/C2xC12 → C2 ⊆ Aut C10 | 480 | | C10.22(C4xDic3) | 480,173 |
C10.23(C4xDic3) = C120:13C4 | φ: C4xDic3/C2xC12 → C2 ⊆ Aut C10 | 480 | | C10.23(C4xDic3) | 480,175 |
C10.24(C4xDic3) = C30.29C42 | φ: C4xDic3/C2xC12 → C2 ⊆ Aut C10 | 480 | | C10.24(C4xDic3) | 480,191 |
C10.25(C4xDic3) = C20xC3:C8 | central extension (φ=1) | 480 | | C10.25(C4xDic3) | 480,121 |
C10.26(C4xDic3) = C5xC42.S3 | central extension (φ=1) | 480 | | C10.26(C4xDic3) | 480,122 |
C10.27(C4xDic3) = Dic3xC40 | central extension (φ=1) | 480 | | C10.27(C4xDic3) | 480,132 |
C10.28(C4xDic3) = C5xC24:C4 | central extension (φ=1) | 480 | | C10.28(C4xDic3) | 480,134 |
C10.29(C4xDic3) = C5xC6.C42 | central extension (φ=1) | 480 | | C10.29(C4xDic3) | 480,150 |