Extensions 1→N→G→Q→1 with N=C6×D5 and Q=Q8

Direct product G=N×Q with N=C6×D5 and Q=Q8
dρLabelID
C6×Q8×D5240C6xQ8xD5480,1142

Semidirect products G=N:Q with N=C6×D5 and Q=Q8
extensionφ:Q→Out NdρLabelID
(C6×D5)⋊1Q8 = D101Dic6φ: Q8/C2C22 ⊆ Out C6×D5240(C6xD5):1Q8480,497
(C6×D5)⋊2Q8 = D102Dic6φ: Q8/C2C22 ⊆ Out C6×D5240(C6xD5):2Q8480,498
(C6×D5)⋊3Q8 = Dic15.D4φ: Q8/C2C22 ⊆ Out C6×D5240(C6xD5):3Q8480,506
(C6×D5)⋊4Q8 = D104Dic6φ: Q8/C2C22 ⊆ Out C6×D5240(C6xD5):4Q8480,507
(C6×D5)⋊5Q8 = D10⋊Dic6φ: Q8/C4C2 ⊆ Out C6×D5240(C6xD5):5Q8480,425
(C6×D5)⋊6Q8 = C60.67D4φ: Q8/C4C2 ⊆ Out C6×D5240(C6xD5):6Q8480,435
(C6×D5)⋊7Q8 = C60.68D4φ: Q8/C4C2 ⊆ Out C6×D5240(C6xD5):7Q8480,436
(C6×D5)⋊8Q8 = C2×D5×Dic6φ: Q8/C4C2 ⊆ Out C6×D5240(C6xD5):8Q8480,1073
(C6×D5)⋊9Q8 = C3×D10⋊Q8φ: Q8/C4C2 ⊆ Out C6×D5240(C6xD5):9Q8480,689
(C6×D5)⋊10Q8 = C3×D102Q8φ: Q8/C4C2 ⊆ Out C6×D5240(C6xD5):10Q8480,690
(C6×D5)⋊11Q8 = C3×D103Q8φ: Q8/C4C2 ⊆ Out C6×D5240(C6xD5):11Q8480,739

Non-split extensions G=N.Q with N=C6×D5 and Q=Q8
extensionφ:Q→Out NdρLabelID
(C6×D5).1Q8 = D10.Dic6φ: Q8/C2C22 ⊆ Out C6×D52408(C6xD5).1Q8480,237
(C6×D5).2Q8 = D10.2Dic6φ: Q8/C2C22 ⊆ Out C6×D52408(C6xD5).2Q8480,238
(C6×D5).3Q8 = D10.20D12φ: Q8/C2C22 ⊆ Out C6×D5120(C6xD5).3Q8480,243
(C6×D5).4Q8 = C2×Dic3⋊F5φ: Q8/C2C22 ⊆ Out C6×D5120(C6xD5).4Q8480,1001
(C6×D5).5Q8 = D5×Dic3⋊C4φ: Q8/C4C2 ⊆ Out C6×D5240(C6xD5).5Q8480,468
(C6×D5).6Q8 = D5×C4⋊Dic3φ: Q8/C4C2 ⊆ Out C6×D5240(C6xD5).6Q8480,488
(C6×D5).7Q8 = C40.Dic3φ: Q8/C4C2 ⊆ Out C6×D52404(C6xD5).7Q8480,300
(C6×D5).8Q8 = C24.1F5φ: Q8/C4C2 ⊆ Out C6×D52404(C6xD5).8Q8480,301
(C6×D5).9Q8 = D10.10D12φ: Q8/C4C2 ⊆ Out C6×D5120(C6xD5).9Q8480,311
(C6×D5).10Q8 = C2×C60⋊C4φ: Q8/C4C2 ⊆ Out C6×D5120(C6xD5).10Q8480,1064
(C6×D5).11Q8 = C3×C40.C4φ: Q8/C4C2 ⊆ Out C6×D52404(C6xD5).11Q8480,275
(C6×D5).12Q8 = C3×D10.Q8φ: Q8/C4C2 ⊆ Out C6×D52404(C6xD5).12Q8480,276
(C6×D5).13Q8 = C3×D10.3Q8φ: Q8/C4C2 ⊆ Out C6×D5120(C6xD5).13Q8480,286
(C6×D5).14Q8 = C6×C4⋊F5φ: Q8/C4C2 ⊆ Out C6×D5120(C6xD5).14Q8480,1051
(C6×D5).15Q8 = C3×D5×C4⋊C4φ: trivial image240(C6xD5).15Q8480,684

׿
×
𝔽