Extensions 1→N→G→Q→1 with N=C5 and Q=D8⋊S3

Direct product G=N×Q with N=C5 and Q=D8⋊S3
dρLabelID
C5×D8⋊S31204C5xD8:S3480,790

Semidirect products G=N:Q with N=C5 and Q=D8⋊S3
extensionφ:Q→Aut NdρLabelID
C51(D8⋊S3) = D40⋊S3φ: D8⋊S3/C8⋊S3C2 ⊆ Aut C51204C5:1(D8:S3)480,330
C52(D8⋊S3) = C408D6φ: D8⋊S3/C24⋊C2C2 ⊆ Aut C51204C5:2(D8:S3)480,334
C53(D8⋊S3) = D30.8D4φ: D8⋊S3/D4⋊S3C2 ⊆ Aut C51208-C5:3(D8:S3)480,558
C54(D8⋊S3) = Dic6⋊D10φ: D8⋊S3/D4.S3C2 ⊆ Aut C51208+C5:4(D8:S3)480,574
C55(D8⋊S3) = D8⋊D15φ: D8⋊S3/C3×D8C2 ⊆ Aut C51204C5:5(D8:S3)480,876
C56(D8⋊S3) = D2010D6φ: D8⋊S3/S3×D4C2 ⊆ Aut C51208-C5:6(D8:S3)480,570
C57(D8⋊S3) = D60.C22φ: D8⋊S3/D42S3C2 ⊆ Aut C51208+C5:7(D8:S3)480,556


׿
×
𝔽