Extensions 1→N→G→Q→1 with N=C5xDic6 and Q=C4

Direct product G=NxQ with N=C5xDic6 and Q=C4
dρLabelID
C20xDic6480C20xDic6480,747

Semidirect products G=N:Q with N=C5xDic6 and Q=C4
extensionφ:Q→Out NdρLabelID
(C5xDic6):1C4 = Dic6:F5φ: C4/C1C4 ⊆ Out C5xDic61208-(C5xDic6):1C4480,229
(C5xDic6):2C4 = D60:2C4φ: C4/C1C4 ⊆ Out C5xDic61208+(C5xDic6):2C4480,233
(C5xDic6):3C4 = Dic6:5F5φ: C4/C1C4 ⊆ Out C5xDic61208-(C5xDic6):3C4480,984
(C5xDic6):4C4 = Dic30:C4φ: C4/C1C4 ⊆ Out C5xDic61208-(C5xDic6):4C4480,230
(C5xDic6):5C4 = D60:5C4φ: C4/C1C4 ⊆ Out C5xDic61208+(C5xDic6):5C4480,234
(C5xDic6):6C4 = F5xDic6φ: C4/C1C4 ⊆ Out C5xDic61208-(C5xDic6):6C4480,982
(C5xDic6):7C4 = C10.Dic12φ: C4/C2C2 ⊆ Out C5xDic6480(C5xDic6):7C4480,49
(C5xDic6):8C4 = C60.99D4φ: C4/C2C2 ⊆ Out C5xDic61204(C5xDic6):8C4480,55
(C5xDic6):9C4 = Dic5xDic6φ: C4/C2C2 ⊆ Out C5xDic6480(C5xDic6):9C4480,408
(C5xDic6):10C4 = Dic6:Dic5φ: C4/C2C2 ⊆ Out C5xDic6480(C5xDic6):10C4480,48
(C5xDic6):11C4 = C60.98D4φ: C4/C2C2 ⊆ Out C5xDic61204(C5xDic6):11C4480,54
(C5xDic6):12C4 = Dic15:7Q8φ: C4/C2C2 ⊆ Out C5xDic6480(C5xDic6):12C4480,420
(C5xDic6):13C4 = C5xC42:4S3φ: C4/C2C2 ⊆ Out C5xDic61202(C5xDic6):13C4480,124
(C5xDic6):14C4 = C5xC2.Dic12φ: C4/C2C2 ⊆ Out C5xDic6480(C5xDic6):14C4480,135
(C5xDic6):15C4 = C5xC6.SD16φ: C4/C2C2 ⊆ Out C5xDic6480(C5xDic6):15C4480,129
(C5xDic6):16C4 = C5xD12:C4φ: C4/C2C2 ⊆ Out C5xDic61204(C5xDic6):16C4480,144
(C5xDic6):17C4 = C5xDic6:C4φ: C4/C2C2 ⊆ Out C5xDic6480(C5xDic6):17C4480,766

Non-split extensions G=N.Q with N=C5xDic6 and Q=C4
extensionφ:Q→Out NdρLabelID
(C5xDic6).1C4 = Dic6.F5φ: C4/C1C4 ⊆ Out C5xDic62408+(C5xDic6).1C4480,992
(C5xDic6).2C4 = D60.C4φ: C4/C1C4 ⊆ Out C5xDic62408+(C5xDic6).2C4480,990
(C5xDic6).3C4 = D12.2Dic5φ: C4/C2C2 ⊆ Out C5xDic62404(C5xDic6).3C4480,362
(C5xDic6).4C4 = D12.Dic5φ: C4/C2C2 ⊆ Out C5xDic62404(C5xDic6).4C4480,364
(C5xDic6).5C4 = C5xD12.C4φ: C4/C2C2 ⊆ Out C5xDic62404(C5xDic6).5C4480,786
(C5xDic6).6C4 = C5xC8oD12φ: trivial image2402(C5xDic6).6C4480,780

׿
x
:
Z
F
o
wr
Q
<