Copied to
clipboard

G = Dic6⋊F5order 480 = 25·3·5

3rd semidirect product of Dic6 and F5 acting via F5/D5=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: Dic63F5, Dic301C4, Dic5.2D12, C4⋊F5.1S3, C4.9(S3×F5), C20.3(C4×S3), C60.2(C2×C4), C5⋊(C6.SD16), C12.2(C2×F5), (C5×Dic6)⋊1C4, (C6×D5).19D4, C32(Q8⋊F5), (C4×D5).21D6, C2.6(D6⋊F5), (C3×D5).1Q16, C10.3(D6⋊C4), C151(Q8⋊C4), (D5×Dic6).3C2, (C3×D5).3SD16, C6.3(C22⋊F5), C60.C4.1C2, C30.3(C22⋊C4), D5.2(D4.S3), (C3×Dic5).22D4, D5.2(C3⋊Q16), D10.23(C3⋊D4), (D5×C12).31C22, (C3×C4⋊F5).1C2, SmallGroup(480,229)

Series: Derived Chief Lower central Upper central

C1C60 — Dic6⋊F5
C1C5C15C30C6×D5D5×C12C3×C4⋊F5 — Dic6⋊F5
C15C30C60 — Dic6⋊F5
C1C2C4

Generators and relations for Dic6⋊F5
 G = < a,b,c,d | a12=c5=d4=1, b2=a6, bab-1=a-1, ac=ca, dad-1=a7, bc=cb, dbd-1=a3b, dcd-1=c3 >

Subgroups: 468 in 84 conjugacy classes, 30 normal (all characteristic)
C1, C2, C2, C3, C4, C4, C22, C5, C6, C6, C8, C2×C4, Q8, D5, C10, Dic3, C12, C12, C2×C6, C15, C4⋊C4, C2×C8, C2×Q8, Dic5, Dic5, C20, C20, F5, D10, C3⋊C8, Dic6, Dic6, C2×Dic3, C2×C12, C3×D5, C30, Q8⋊C4, C5⋊C8, Dic10, C4×D5, C4×D5, C5×Q8, C2×F5, C2×C3⋊C8, C3×C4⋊C4, C2×Dic6, C5×Dic3, C3×Dic5, Dic15, C60, C3×F5, C6×D5, D5⋊C8, C4⋊F5, Q8×D5, C6.SD16, C15⋊C8, D5×Dic3, C15⋊Q8, D5×C12, C5×Dic6, Dic30, C6×F5, Q8⋊F5, C3×C4⋊F5, C60.C4, D5×Dic6, Dic6⋊F5
Quotients: C1, C2, C4, C22, S3, C2×C4, D4, D6, C22⋊C4, SD16, Q16, F5, C4×S3, D12, C3⋊D4, Q8⋊C4, C2×F5, D6⋊C4, D4.S3, C3⋊Q16, C22⋊F5, C6.SD16, S3×F5, Q8⋊F5, D6⋊F5, Dic6⋊F5

Smallest permutation representation of Dic6⋊F5
On 120 points
Generators in S120
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104 105 106 107 108)(109 110 111 112 113 114 115 116 117 118 119 120)
(1 21 7 15)(2 20 8 14)(3 19 9 13)(4 18 10 24)(5 17 11 23)(6 16 12 22)(25 79 31 73)(26 78 32 84)(27 77 33 83)(28 76 34 82)(29 75 35 81)(30 74 36 80)(37 88 43 94)(38 87 44 93)(39 86 45 92)(40 85 46 91)(41 96 47 90)(42 95 48 89)(49 120 55 114)(50 119 56 113)(51 118 57 112)(52 117 58 111)(53 116 59 110)(54 115 60 109)(61 104 67 98)(62 103 68 97)(63 102 69 108)(64 101 70 107)(65 100 71 106)(66 99 72 105)
(1 45 25 56 102)(2 46 26 57 103)(3 47 27 58 104)(4 48 28 59 105)(5 37 29 60 106)(6 38 30 49 107)(7 39 31 50 108)(8 40 32 51 97)(9 41 33 52 98)(10 42 34 53 99)(11 43 35 54 100)(12 44 36 55 101)(13 96 83 117 61)(14 85 84 118 62)(15 86 73 119 63)(16 87 74 120 64)(17 88 75 109 65)(18 89 76 110 66)(19 90 77 111 67)(20 91 78 112 68)(21 92 79 113 69)(22 93 80 114 70)(23 94 81 115 71)(24 95 82 116 72)
(2 8)(4 10)(6 12)(13 22)(14 17)(15 24)(16 19)(18 21)(20 23)(25 102 56 45)(26 97 57 40)(27 104 58 47)(28 99 59 42)(29 106 60 37)(30 101 49 44)(31 108 50 39)(32 103 51 46)(33 98 52 41)(34 105 53 48)(35 100 54 43)(36 107 55 38)(61 114 96 80)(62 109 85 75)(63 116 86 82)(64 111 87 77)(65 118 88 84)(66 113 89 79)(67 120 90 74)(68 115 91 81)(69 110 92 76)(70 117 93 83)(71 112 94 78)(72 119 95 73)

G:=sub<Sym(120)| (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120), (1,21,7,15)(2,20,8,14)(3,19,9,13)(4,18,10,24)(5,17,11,23)(6,16,12,22)(25,79,31,73)(26,78,32,84)(27,77,33,83)(28,76,34,82)(29,75,35,81)(30,74,36,80)(37,88,43,94)(38,87,44,93)(39,86,45,92)(40,85,46,91)(41,96,47,90)(42,95,48,89)(49,120,55,114)(50,119,56,113)(51,118,57,112)(52,117,58,111)(53,116,59,110)(54,115,60,109)(61,104,67,98)(62,103,68,97)(63,102,69,108)(64,101,70,107)(65,100,71,106)(66,99,72,105), (1,45,25,56,102)(2,46,26,57,103)(3,47,27,58,104)(4,48,28,59,105)(5,37,29,60,106)(6,38,30,49,107)(7,39,31,50,108)(8,40,32,51,97)(9,41,33,52,98)(10,42,34,53,99)(11,43,35,54,100)(12,44,36,55,101)(13,96,83,117,61)(14,85,84,118,62)(15,86,73,119,63)(16,87,74,120,64)(17,88,75,109,65)(18,89,76,110,66)(19,90,77,111,67)(20,91,78,112,68)(21,92,79,113,69)(22,93,80,114,70)(23,94,81,115,71)(24,95,82,116,72), (2,8)(4,10)(6,12)(13,22)(14,17)(15,24)(16,19)(18,21)(20,23)(25,102,56,45)(26,97,57,40)(27,104,58,47)(28,99,59,42)(29,106,60,37)(30,101,49,44)(31,108,50,39)(32,103,51,46)(33,98,52,41)(34,105,53,48)(35,100,54,43)(36,107,55,38)(61,114,96,80)(62,109,85,75)(63,116,86,82)(64,111,87,77)(65,118,88,84)(66,113,89,79)(67,120,90,74)(68,115,91,81)(69,110,92,76)(70,117,93,83)(71,112,94,78)(72,119,95,73)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120), (1,21,7,15)(2,20,8,14)(3,19,9,13)(4,18,10,24)(5,17,11,23)(6,16,12,22)(25,79,31,73)(26,78,32,84)(27,77,33,83)(28,76,34,82)(29,75,35,81)(30,74,36,80)(37,88,43,94)(38,87,44,93)(39,86,45,92)(40,85,46,91)(41,96,47,90)(42,95,48,89)(49,120,55,114)(50,119,56,113)(51,118,57,112)(52,117,58,111)(53,116,59,110)(54,115,60,109)(61,104,67,98)(62,103,68,97)(63,102,69,108)(64,101,70,107)(65,100,71,106)(66,99,72,105), (1,45,25,56,102)(2,46,26,57,103)(3,47,27,58,104)(4,48,28,59,105)(5,37,29,60,106)(6,38,30,49,107)(7,39,31,50,108)(8,40,32,51,97)(9,41,33,52,98)(10,42,34,53,99)(11,43,35,54,100)(12,44,36,55,101)(13,96,83,117,61)(14,85,84,118,62)(15,86,73,119,63)(16,87,74,120,64)(17,88,75,109,65)(18,89,76,110,66)(19,90,77,111,67)(20,91,78,112,68)(21,92,79,113,69)(22,93,80,114,70)(23,94,81,115,71)(24,95,82,116,72), (2,8)(4,10)(6,12)(13,22)(14,17)(15,24)(16,19)(18,21)(20,23)(25,102,56,45)(26,97,57,40)(27,104,58,47)(28,99,59,42)(29,106,60,37)(30,101,49,44)(31,108,50,39)(32,103,51,46)(33,98,52,41)(34,105,53,48)(35,100,54,43)(36,107,55,38)(61,114,96,80)(62,109,85,75)(63,116,86,82)(64,111,87,77)(65,118,88,84)(66,113,89,79)(67,120,90,74)(68,115,91,81)(69,110,92,76)(70,117,93,83)(71,112,94,78)(72,119,95,73) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104,105,106,107,108),(109,110,111,112,113,114,115,116,117,118,119,120)], [(1,21,7,15),(2,20,8,14),(3,19,9,13),(4,18,10,24),(5,17,11,23),(6,16,12,22),(25,79,31,73),(26,78,32,84),(27,77,33,83),(28,76,34,82),(29,75,35,81),(30,74,36,80),(37,88,43,94),(38,87,44,93),(39,86,45,92),(40,85,46,91),(41,96,47,90),(42,95,48,89),(49,120,55,114),(50,119,56,113),(51,118,57,112),(52,117,58,111),(53,116,59,110),(54,115,60,109),(61,104,67,98),(62,103,68,97),(63,102,69,108),(64,101,70,107),(65,100,71,106),(66,99,72,105)], [(1,45,25,56,102),(2,46,26,57,103),(3,47,27,58,104),(4,48,28,59,105),(5,37,29,60,106),(6,38,30,49,107),(7,39,31,50,108),(8,40,32,51,97),(9,41,33,52,98),(10,42,34,53,99),(11,43,35,54,100),(12,44,36,55,101),(13,96,83,117,61),(14,85,84,118,62),(15,86,73,119,63),(16,87,74,120,64),(17,88,75,109,65),(18,89,76,110,66),(19,90,77,111,67),(20,91,78,112,68),(21,92,79,113,69),(22,93,80,114,70),(23,94,81,115,71),(24,95,82,116,72)], [(2,8),(4,10),(6,12),(13,22),(14,17),(15,24),(16,19),(18,21),(20,23),(25,102,56,45),(26,97,57,40),(27,104,58,47),(28,99,59,42),(29,106,60,37),(30,101,49,44),(31,108,50,39),(32,103,51,46),(33,98,52,41),(34,105,53,48),(35,100,54,43),(36,107,55,38),(61,114,96,80),(62,109,85,75),(63,116,86,82),(64,111,87,77),(65,118,88,84),(66,113,89,79),(67,120,90,74),(68,115,91,81),(69,110,92,76),(70,117,93,83),(71,112,94,78),(72,119,95,73)]])

33 conjugacy classes

class 1 2A2B2C 3 4A4B4C4D4E4F 5 6A6B6C8A8B8C8D 10 12A12B···12F 15 20A20B20C 30 60A60B
order1222344444456668888101212···1215202020306060
size1155221012202060421010303030304420···20882424888

33 irreducible representations

dim111111222222222444448888
type++++++++-+++--++-+-
imageC1C2C2C2C4C4S3D4D4D6SD16Q16D12C4×S3C3⋊D4F5C2×F5D4.S3C3⋊Q16C22⋊F5S3×F5Q8⋊F5D6⋊F5Dic6⋊F5
kernelDic6⋊F5C3×C4⋊F5C60.C4D5×Dic6C5×Dic6Dic30C4⋊F5C3×Dic5C6×D5C4×D5C3×D5C3×D5Dic5C20D10Dic6C12D5D5C6C4C3C2C1
# reps111122111122222111121112

Matrix representation of Dic6⋊F5 in GL8(𝔽241)

2405000000
961000000
001500000
00102250000
0000240000
0000024000
0000002400
0000000240
,
0146000000
1370000000
0059340000
001671820000
00001170234234
0000712470
0000071247
00002342340117
,
10000000
01000000
00100000
00010000
0000240240240240
00001000
00000100
00000010
,
640000000
122177000000
006400000
000640000
00001000
00000001
00000100
0000240240240240

G:=sub<GL(8,GF(241))| [240,96,0,0,0,0,0,0,5,1,0,0,0,0,0,0,0,0,15,10,0,0,0,0,0,0,0,225,0,0,0,0,0,0,0,0,240,0,0,0,0,0,0,0,0,240,0,0,0,0,0,0,0,0,240,0,0,0,0,0,0,0,0,240],[0,137,0,0,0,0,0,0,146,0,0,0,0,0,0,0,0,0,59,167,0,0,0,0,0,0,34,182,0,0,0,0,0,0,0,0,117,7,0,234,0,0,0,0,0,124,7,234,0,0,0,0,234,7,124,0,0,0,0,0,234,0,7,117],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,240,1,0,0,0,0,0,0,240,0,1,0,0,0,0,0,240,0,0,1,0,0,0,0,240,0,0,0],[64,122,0,0,0,0,0,0,0,177,0,0,0,0,0,0,0,0,64,0,0,0,0,0,0,0,0,64,0,0,0,0,0,0,0,0,1,0,0,240,0,0,0,0,0,0,1,240,0,0,0,0,0,0,0,240,0,0,0,0,0,1,0,240] >;

Dic6⋊F5 in GAP, Magma, Sage, TeX

{\rm Dic}_6\rtimes F_5
% in TeX

G:=Group("Dic6:F5");
// GroupNames label

G:=SmallGroup(480,229);
// by ID

G=gap.SmallGroup(480,229);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-5,28,141,120,675,346,80,1356,9414,4724]);
// Polycyclic

G:=Group<a,b,c,d|a^12=c^5=d^4=1,b^2=a^6,b*a*b^-1=a^-1,a*c=c*a,d*a*d^-1=a^7,b*c=c*b,d*b*d^-1=a^3*b,d*c*d^-1=c^3>;
// generators/relations

׿
×
𝔽