Copied to
clipboard

G = D605C4order 480 = 25·3·5

5th semidirect product of D60 and C4 acting faithfully

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D605C4, Dic62F5, Dic5.21D12, C154C4≀C2, (C4×F5)⋊2S3, C4.4(S3×F5), C20.8(C4×S3), (C12×F5)⋊2C2, C60.11(C2×C4), (C5×Dic6)⋊5C4, (C6×D5).24D4, C32(Q82F5), (C4×D5).26D6, C12.25(C2×F5), C12.F52C2, C51(C424S3), C10.8(D6⋊C4), C2.11(D6⋊F5), C6.8(C22⋊F5), C12.28D10.5C2, D10.2(C3⋊D4), C30.8(C22⋊C4), (C3×Dic5).27D4, (D5×C12).41C22, SmallGroup(480,234)

Series: Derived Chief Lower central Upper central

C1C60 — D605C4
C1C5C15C30C6×D5D5×C12C12×F5 — D605C4
C15C30C60 — D605C4
C1C2C4

Generators and relations for D605C4
 G = < a,b,c | a60=b2=c4=1, bab=a-1, cac-1=a13, cbc-1=a57b >

Subgroups: 564 in 88 conjugacy classes, 26 normal (all characteristic)
C1, C2, C2, C3, C4, C4, C22, C5, S3, C6, C6, C8, C2×C4, D4, Q8, D5, C10, Dic3, C12, C12, D6, C2×C6, C15, C42, M4(2), C4○D4, Dic5, C20, C20, F5, D10, D10, C3⋊C8, Dic6, C4×S3, D12, C3⋊D4, C2×C12, C3×D5, D15, C30, C4≀C2, C5⋊C8, C4×D5, C4×D5, D20, C5×Q8, C2×F5, C4.Dic3, C4×C12, C4○D12, C5×Dic3, C3×Dic5, C60, C3×F5, C6×D5, D30, C4.F5, C4×F5, Q82D5, C424S3, C15⋊C8, D30.C2, C3⋊D20, D5×C12, C5×Dic6, D60, C6×F5, Q82F5, C12×F5, C12.F5, C12.28D10, D605C4
Quotients: C1, C2, C4, C22, S3, C2×C4, D4, D6, C22⋊C4, F5, C4×S3, D12, C3⋊D4, C4≀C2, C2×F5, D6⋊C4, C22⋊F5, C424S3, S3×F5, Q82F5, D6⋊F5, D605C4

Smallest permutation representation of D605C4
On 120 points
Generators in S120
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)
(1 79)(2 78)(3 77)(4 76)(5 75)(6 74)(7 73)(8 72)(9 71)(10 70)(11 69)(12 68)(13 67)(14 66)(15 65)(16 64)(17 63)(18 62)(19 61)(20 120)(21 119)(22 118)(23 117)(24 116)(25 115)(26 114)(27 113)(28 112)(29 111)(30 110)(31 109)(32 108)(33 107)(34 106)(35 105)(36 104)(37 103)(38 102)(39 101)(40 100)(41 99)(42 98)(43 97)(44 96)(45 95)(46 94)(47 93)(48 92)(49 91)(50 90)(51 89)(52 88)(53 87)(54 86)(55 85)(56 84)(57 83)(58 82)(59 81)(60 80)
(2 38 50 14)(3 15 39 27)(4 52 28 40)(5 29 17 53)(7 43 55 19)(8 20 44 32)(9 57 33 45)(10 34 22 58)(12 48 60 24)(13 25 49 37)(18 30 54 42)(23 35 59 47)(61 82 79 88)(62 119 68 101)(63 96 117 114)(64 73 106 67)(65 110 95 80)(66 87 84 93)(69 78 111 72)(70 115 100 85)(71 92 89 98)(74 83 116 77)(75 120 105 90)(76 97 94 103)(81 102 99 108)(86 107 104 113)(91 112 109 118)

G:=sub<Sym(120)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,79)(2,78)(3,77)(4,76)(5,75)(6,74)(7,73)(8,72)(9,71)(10,70)(11,69)(12,68)(13,67)(14,66)(15,65)(16,64)(17,63)(18,62)(19,61)(20,120)(21,119)(22,118)(23,117)(24,116)(25,115)(26,114)(27,113)(28,112)(29,111)(30,110)(31,109)(32,108)(33,107)(34,106)(35,105)(36,104)(37,103)(38,102)(39,101)(40,100)(41,99)(42,98)(43,97)(44,96)(45,95)(46,94)(47,93)(48,92)(49,91)(50,90)(51,89)(52,88)(53,87)(54,86)(55,85)(56,84)(57,83)(58,82)(59,81)(60,80), (2,38,50,14)(3,15,39,27)(4,52,28,40)(5,29,17,53)(7,43,55,19)(8,20,44,32)(9,57,33,45)(10,34,22,58)(12,48,60,24)(13,25,49,37)(18,30,54,42)(23,35,59,47)(61,82,79,88)(62,119,68,101)(63,96,117,114)(64,73,106,67)(65,110,95,80)(66,87,84,93)(69,78,111,72)(70,115,100,85)(71,92,89,98)(74,83,116,77)(75,120,105,90)(76,97,94,103)(81,102,99,108)(86,107,104,113)(91,112,109,118)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,79)(2,78)(3,77)(4,76)(5,75)(6,74)(7,73)(8,72)(9,71)(10,70)(11,69)(12,68)(13,67)(14,66)(15,65)(16,64)(17,63)(18,62)(19,61)(20,120)(21,119)(22,118)(23,117)(24,116)(25,115)(26,114)(27,113)(28,112)(29,111)(30,110)(31,109)(32,108)(33,107)(34,106)(35,105)(36,104)(37,103)(38,102)(39,101)(40,100)(41,99)(42,98)(43,97)(44,96)(45,95)(46,94)(47,93)(48,92)(49,91)(50,90)(51,89)(52,88)(53,87)(54,86)(55,85)(56,84)(57,83)(58,82)(59,81)(60,80), (2,38,50,14)(3,15,39,27)(4,52,28,40)(5,29,17,53)(7,43,55,19)(8,20,44,32)(9,57,33,45)(10,34,22,58)(12,48,60,24)(13,25,49,37)(18,30,54,42)(23,35,59,47)(61,82,79,88)(62,119,68,101)(63,96,117,114)(64,73,106,67)(65,110,95,80)(66,87,84,93)(69,78,111,72)(70,115,100,85)(71,92,89,98)(74,83,116,77)(75,120,105,90)(76,97,94,103)(81,102,99,108)(86,107,104,113)(91,112,109,118) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)], [(1,79),(2,78),(3,77),(4,76),(5,75),(6,74),(7,73),(8,72),(9,71),(10,70),(11,69),(12,68),(13,67),(14,66),(15,65),(16,64),(17,63),(18,62),(19,61),(20,120),(21,119),(22,118),(23,117),(24,116),(25,115),(26,114),(27,113),(28,112),(29,111),(30,110),(31,109),(32,108),(33,107),(34,106),(35,105),(36,104),(37,103),(38,102),(39,101),(40,100),(41,99),(42,98),(43,97),(44,96),(45,95),(46,94),(47,93),(48,92),(49,91),(50,90),(51,89),(52,88),(53,87),(54,86),(55,85),(56,84),(57,83),(58,82),(59,81),(60,80)], [(2,38,50,14),(3,15,39,27),(4,52,28,40),(5,29,17,53),(7,43,55,19),(8,20,44,32),(9,57,33,45),(10,34,22,58),(12,48,60,24),(13,25,49,37),(18,30,54,42),(23,35,59,47),(61,82,79,88),(62,119,68,101),(63,96,117,114),(64,73,106,67),(65,110,95,80),(66,87,84,93),(69,78,111,72),(70,115,100,85),(71,92,89,98),(74,83,116,77),(75,120,105,90),(76,97,94,103),(81,102,99,108),(86,107,104,113),(91,112,109,118)]])

39 conjugacy classes

class 1 2A2B2C 3 4A4B4C4D4E4F4G4H 5 6A6B6C8A8B 10 12A12B12C···12L 15 20A20B20C 30 60A60B
order122234444444456668810121212···1215202020306060
size11106022551010101012421010606042210···10882424888

39 irreducible representations

dim1111112222222224448888
type++++++++++++++++
imageC1C2C2C2C4C4S3D4D4D6D12C4×S3C3⋊D4C4≀C2C424S3F5C2×F5C22⋊F5S3×F5Q82F5D6⋊F5D605C4
kernelD605C4C12×F5C12.F5C12.28D10C5×Dic6D60C4×F5C3×Dic5C6×D5C4×D5Dic5C20D10C15C5Dic6C12C6C4C3C2C1
# reps1111221111222481121112

Matrix representation of D605C4 in GL8(𝔽241)

640000000
23177000000
002392360000
009710000
0000002400
0000000240
00001111
0000240000
,
159142000000
4682000000
00271820000
002372140000
00000234117234
00002341172340
0000124077
0000117124124117
,
10000000
119177000000
0024000000
0002400000
00001000
00000001
00000100
0000240240240240

G:=sub<GL(8,GF(241))| [64,23,0,0,0,0,0,0,0,177,0,0,0,0,0,0,0,0,239,97,0,0,0,0,0,0,236,1,0,0,0,0,0,0,0,0,0,0,1,240,0,0,0,0,0,0,1,0,0,0,0,0,240,0,1,0,0,0,0,0,0,240,1,0],[159,46,0,0,0,0,0,0,142,82,0,0,0,0,0,0,0,0,27,237,0,0,0,0,0,0,182,214,0,0,0,0,0,0,0,0,0,234,124,117,0,0,0,0,234,117,0,124,0,0,0,0,117,234,7,124,0,0,0,0,234,0,7,117],[1,119,0,0,0,0,0,0,0,177,0,0,0,0,0,0,0,0,240,0,0,0,0,0,0,0,0,240,0,0,0,0,0,0,0,0,1,0,0,240,0,0,0,0,0,0,1,240,0,0,0,0,0,0,0,240,0,0,0,0,0,1,0,240] >;

D605C4 in GAP, Magma, Sage, TeX

D_{60}\rtimes_5C_4
% in TeX

G:=Group("D60:5C4");
// GroupNames label

G:=SmallGroup(480,234);
// by ID

G=gap.SmallGroup(480,234);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-5,28,141,120,219,346,80,1356,9414,4724]);
// Polycyclic

G:=Group<a,b,c|a^60=b^2=c^4=1,b*a*b=a^-1,c*a*c^-1=a^13,c*b*c^-1=a^57*b>;
// generators/relations

׿
×
𝔽