Extensions 1→N→G→Q→1 with N=C3 and Q=D40⋊C2

Direct product G=N×Q with N=C3 and Q=D40⋊C2
dρLabelID
C3×D40⋊C21204C3xD40:C2480,707

Semidirect products G=N:Q with N=C3 and Q=D40⋊C2
extensionφ:Q→Aut NdρLabelID
C31(D40⋊C2) = C24⋊D10φ: D40⋊C2/C8⋊D5C2 ⊆ Aut C31204+C3:1(D40:C2)480,325
C32(D40⋊C2) = C408D6φ: D40⋊C2/D40C2 ⊆ Aut C31204C3:2(D40:C2)480,334
C33(D40⋊C2) = Dic6⋊D10φ: D40⋊C2/D4⋊D5C2 ⊆ Aut C31208+C3:3(D40:C2)480,574
C34(D40⋊C2) = D60⋊C22φ: D40⋊C2/Q8⋊D5C2 ⊆ Aut C31208+C3:4(D40:C2)480,582
C35(D40⋊C2) = Q83D30φ: D40⋊C2/C5×SD16C2 ⊆ Aut C31204+C3:5(D40:C2)480,879
C36(D40⋊C2) = D20.9D6φ: D40⋊C2/D4×D5C2 ⊆ Aut C31208+C3:6(D40:C2)480,567
C37(D40⋊C2) = D20⋊D6φ: D40⋊C2/Q82D5C2 ⊆ Aut C31208+C3:7(D40:C2)480,578


׿
×
𝔽