metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C8⋊3D10, D40⋊6C2, Q8⋊2D10, C40⋊3C22, SD16⋊1D5, D4.3D10, D10.15D4, D20⋊2C22, C20.5C23, Dic5.17D4, D4⋊D5⋊3C2, (D4×D5)⋊3C2, Q8⋊D5⋊2C2, C8⋊D5⋊1C2, C5⋊3(C8⋊C22), C2.19(D4×D5), C5⋊2C8⋊2C22, Q8⋊2D5⋊1C2, (C5×SD16)⋊1C2, C10.31(C2×D4), (C5×Q8)⋊2C22, C4.5(C22×D5), (C4×D5).2C22, (C5×D4).3C22, SmallGroup(160,135)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for D40⋊C2
G = < a,b,c | a40=b2=c2=1, bab=a-1, cac=a11, bc=cb >
Subgroups: 288 in 68 conjugacy classes, 27 normal (all characteristic)
C1, C2, C2, C4, C4, C22, C5, C8, C8, C2×C4, D4, D4, Q8, C23, D5, C10, C10, M4(2), D8, SD16, SD16, C2×D4, C4○D4, Dic5, C20, C20, D10, D10, C2×C10, C8⋊C22, C5⋊2C8, C40, C4×D5, C4×D5, D20, D20, C5⋊D4, C5×D4, C5×Q8, C22×D5, C8⋊D5, D40, D4⋊D5, Q8⋊D5, C5×SD16, D4×D5, Q8⋊2D5, D40⋊C2
Quotients: C1, C2, C22, D4, C23, D5, C2×D4, D10, C8⋊C22, C22×D5, D4×D5, D40⋊C2
Character table of D40⋊C2
class | 1 | 2A | 2B | 2C | 2D | 2E | 4A | 4B | 4C | 5A | 5B | 8A | 8B | 10A | 10B | 10C | 10D | 20A | 20B | 20C | 20D | 40A | 40B | 40C | 40D | |
size | 1 | 1 | 4 | 10 | 20 | 20 | 2 | 4 | 10 | 2 | 2 | 4 | 20 | 2 | 2 | 8 | 8 | 4 | 4 | 8 | 8 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ6 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ9 | 2 | 2 | 0 | -2 | 0 | 0 | -2 | 0 | 2 | 2 | 2 | 0 | 0 | 2 | 2 | 0 | 0 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | 0 | 2 | 0 | 0 | -2 | 0 | -2 | 2 | 2 | 0 | 0 | 2 | 2 | 0 | 0 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | 2 | -2 | 0 | 0 | 0 | 2 | -2 | 0 | -1+√5/2 | -1-√5/2 | 2 | 0 | -1+√5/2 | -1-√5/2 | 1-√5/2 | 1+√5/2 | -1-√5/2 | -1+√5/2 | 1+√5/2 | 1-√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | orthogonal lifted from D10 |
ρ12 | 2 | 2 | 2 | 0 | 0 | 0 | 2 | 2 | 0 | -1+√5/2 | -1-√5/2 | 2 | 0 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | orthogonal lifted from D5 |
ρ13 | 2 | 2 | -2 | 0 | 0 | 0 | 2 | 2 | 0 | -1-√5/2 | -1+√5/2 | -2 | 0 | -1-√5/2 | -1+√5/2 | 1+√5/2 | 1-√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | 1-√5/2 | 1-√5/2 | 1+√5/2 | 1+√5/2 | orthogonal lifted from D10 |
ρ14 | 2 | 2 | 2 | 0 | 0 | 0 | 2 | -2 | 0 | -1-√5/2 | -1+√5/2 | -2 | 0 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | 1-√5/2 | 1+√5/2 | 1-√5/2 | 1-√5/2 | 1+√5/2 | 1+√5/2 | orthogonal lifted from D10 |
ρ15 | 2 | 2 | 2 | 0 | 0 | 0 | 2 | -2 | 0 | -1+√5/2 | -1-√5/2 | -2 | 0 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | 1+√5/2 | 1-√5/2 | 1+√5/2 | 1+√5/2 | 1-√5/2 | 1-√5/2 | orthogonal lifted from D10 |
ρ16 | 2 | 2 | -2 | 0 | 0 | 0 | 2 | 2 | 0 | -1+√5/2 | -1-√5/2 | -2 | 0 | -1+√5/2 | -1-√5/2 | 1-√5/2 | 1+√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | 1+√5/2 | 1+√5/2 | 1-√5/2 | 1-√5/2 | orthogonal lifted from D10 |
ρ17 | 2 | 2 | 2 | 0 | 0 | 0 | 2 | 2 | 0 | -1-√5/2 | -1+√5/2 | 2 | 0 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | orthogonal lifted from D5 |
ρ18 | 2 | 2 | -2 | 0 | 0 | 0 | 2 | -2 | 0 | -1-√5/2 | -1+√5/2 | 2 | 0 | -1-√5/2 | -1+√5/2 | 1+√5/2 | 1-√5/2 | -1+√5/2 | -1-√5/2 | 1-√5/2 | 1+√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | orthogonal lifted from D10 |
ρ19 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 4 | 0 | 0 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C8⋊C22 |
ρ20 | 4 | 4 | 0 | 0 | 0 | 0 | -4 | 0 | 0 | -1-√5 | -1+√5 | 0 | 0 | -1-√5 | -1+√5 | 0 | 0 | 1-√5 | 1+√5 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4×D5 |
ρ21 | 4 | 4 | 0 | 0 | 0 | 0 | -4 | 0 | 0 | -1+√5 | -1-√5 | 0 | 0 | -1+√5 | -1-√5 | 0 | 0 | 1+√5 | 1-√5 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4×D5 |
ρ22 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1+√5 | -1-√5 | 0 | 0 | 1-√5 | 1+√5 | 0 | 0 | 0 | 0 | 0 | 0 | -ζ83ζ53+ζ83ζ52-ζ8ζ53+ζ8ζ52 | ζ83ζ53-ζ83ζ52+ζ8ζ53-ζ8ζ52 | -ζ87ζ54+ζ87ζ5-ζ85ζ54+ζ85ζ5 | -ζ83ζ54+ζ83ζ5-ζ8ζ54+ζ8ζ5 | orthogonal faithful |
ρ23 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1+√5 | -1-√5 | 0 | 0 | 1-√5 | 1+√5 | 0 | 0 | 0 | 0 | 0 | 0 | ζ83ζ53-ζ83ζ52+ζ8ζ53-ζ8ζ52 | -ζ83ζ53+ζ83ζ52-ζ8ζ53+ζ8ζ52 | -ζ83ζ54+ζ83ζ5-ζ8ζ54+ζ8ζ5 | -ζ87ζ54+ζ87ζ5-ζ85ζ54+ζ85ζ5 | orthogonal faithful |
ρ24 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1-√5 | -1+√5 | 0 | 0 | 1+√5 | 1-√5 | 0 | 0 | 0 | 0 | 0 | 0 | -ζ87ζ54+ζ87ζ5-ζ85ζ54+ζ85ζ5 | -ζ83ζ54+ζ83ζ5-ζ8ζ54+ζ8ζ5 | ζ83ζ53-ζ83ζ52+ζ8ζ53-ζ8ζ52 | -ζ83ζ53+ζ83ζ52-ζ8ζ53+ζ8ζ52 | orthogonal faithful |
ρ25 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1-√5 | -1+√5 | 0 | 0 | 1+√5 | 1-√5 | 0 | 0 | 0 | 0 | 0 | 0 | -ζ83ζ54+ζ83ζ5-ζ8ζ54+ζ8ζ5 | -ζ87ζ54+ζ87ζ5-ζ85ζ54+ζ85ζ5 | -ζ83ζ53+ζ83ζ52-ζ8ζ53+ζ8ζ52 | ζ83ζ53-ζ83ζ52+ζ8ζ53-ζ8ζ52 | orthogonal faithful |
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)
(1 5)(2 4)(6 40)(7 39)(8 38)(9 37)(10 36)(11 35)(12 34)(13 33)(14 32)(15 31)(16 30)(17 29)(18 28)(19 27)(20 26)(21 25)(22 24)
(2 12)(3 23)(4 34)(6 16)(7 27)(8 38)(10 20)(11 31)(14 24)(15 35)(18 28)(19 39)(22 32)(26 36)(30 40)
G:=sub<Sym(40)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40), (1,5)(2,4)(6,40)(7,39)(8,38)(9,37)(10,36)(11,35)(12,34)(13,33)(14,32)(15,31)(16,30)(17,29)(18,28)(19,27)(20,26)(21,25)(22,24), (2,12)(3,23)(4,34)(6,16)(7,27)(8,38)(10,20)(11,31)(14,24)(15,35)(18,28)(19,39)(22,32)(26,36)(30,40)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40), (1,5)(2,4)(6,40)(7,39)(8,38)(9,37)(10,36)(11,35)(12,34)(13,33)(14,32)(15,31)(16,30)(17,29)(18,28)(19,27)(20,26)(21,25)(22,24), (2,12)(3,23)(4,34)(6,16)(7,27)(8,38)(10,20)(11,31)(14,24)(15,35)(18,28)(19,39)(22,32)(26,36)(30,40) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)], [(1,5),(2,4),(6,40),(7,39),(8,38),(9,37),(10,36),(11,35),(12,34),(13,33),(14,32),(15,31),(16,30),(17,29),(18,28),(19,27),(20,26),(21,25),(22,24)], [(2,12),(3,23),(4,34),(6,16),(7,27),(8,38),(10,20),(11,31),(14,24),(15,35),(18,28),(19,39),(22,32),(26,36),(30,40)]])
D40⋊C2 is a maximal subgroup of
D20.29D4 Q16⋊D10 D8⋊15D10 D5×C8⋊C22 D8⋊5D10 D40⋊C22 C40.C23 C24⋊D10 C40⋊8D6 D20.9D6 Dic6⋊D10 D20⋊D6 D60⋊C22 Q8⋊3D30 GL2(𝔽3)⋊D5
D40⋊C2 is a maximal quotient of
C4⋊C4.D10 D4.2Dic10 (D4×D5)⋊C4 D4⋊D20 C5⋊(C8⋊2D4) C40⋊5C4⋊C2 D4⋊D5⋊6C4 D20⋊3D4 Dic5.9Q16 Q8⋊C4⋊D5 Q8⋊(C4×D5) D10.7Q16 D20⋊4D4 C5⋊(C8⋊D4) Q8⋊D5⋊6C4 D20.12D4 C40⋊3Q8 C8⋊(C4×D5) D10.17SD16 C8⋊2D20 C4.Q8⋊D5 D40⋊15C4 D20⋊Q8 D20.Q8 Dic5⋊5SD16 SD16⋊Dic5 (C5×D4).D4 D10⋊6SD16 D20⋊7D4 C40⋊8D4 C40⋊9D4 C24⋊D10 C40⋊8D6 D20.9D6 Dic6⋊D10 D20⋊D6 D60⋊C22 Q8⋊3D30
Matrix representation of D40⋊C2 ►in GL6(𝔽41)
40 | 35 | 0 | 0 | 0 | 0 |
6 | 35 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 40 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
35 | 40 | 0 | 0 | 0 | 0 |
0 | 0 | 40 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 1 | 0 |
40 | 0 | 0 | 0 | 0 | 0 |
0 | 40 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 40 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 1 | 0 |
G:=sub<GL(6,GF(41))| [40,6,0,0,0,0,35,35,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,1,0,0,0],[1,35,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,1,0],[40,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,0,0,1,0,0,0,0,1,0] >;
D40⋊C2 in GAP, Magma, Sage, TeX
D_{40}\rtimes C_2
% in TeX
G:=Group("D40:C2");
// GroupNames label
G:=SmallGroup(160,135);
// by ID
G=gap.SmallGroup(160,135);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-2,-5,362,116,86,297,159,69,4613]);
// Polycyclic
G:=Group<a,b,c|a^40=b^2=c^2=1,b*a*b=a^-1,c*a*c=a^11,b*c=c*b>;
// generators/relations
Export